Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 8
180
Views
2
CrossRef citations to date
0
Altmetric
Articles

Dynamics of heat passage in hybrid and tri-hybrid Oldroyd-B blood flows through a wedge-shaped artery: A medical application

&
Pages 1300-1316 | Received 30 Sep 2022, Accepted 05 Apr 2023, Published online: 19 Apr 2023

References

  • A. Ahmed and S. Nadeem, “The study of (Cu, TiO2, Al2O3) nanoparticles as antimicrobials of blood flow through diseased arteries,” J. Mol. Liq., vol. 216, pp. 615–623, 2016. DOI: 10.1016/j.molliq.2016.01.059.
  • A. Zaman, N. Ali and M. Sajjad, “Effects of nanoparticles (Cu, TiO2, Al2O3) on unsteady blood flow through a curved overlapping stenosed channel,” Math. Comput. Simul., vol. 156, pp. 279–293, 2019. DOI: 10.1016/j.matcom.2018.08.012.
  • N. Iftikhar, H. Sadaf and A. Rehman, “Consequences of gold nanoparticles of MHD blood flow in a wavy tube with wall properties,” Waves Random Complex Media., pp. 1–17, 2022. DOI: 10.1080/17455030.2021.2017067.
  • J. Akram, N. S. Akbar and D. Tripathi, “Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: A Sutterby fluid model,” Microvasc. Res., vol. 132, no. March, pp. 104062, 2020. DOI: 10.1016/j.mvr.2020.104062.
  • M. Khazayinejad, M. Hafezi and B. Dabir, “Peristaltic transport of biological graphene-blood nanofluid considering inclined magnetic field and thermal radiation in a porous media,” Powder Technol., vol. 384, pp. 452–465, 2021. DOI: 10.1016/j.powtec.2021.02.036.
  • M. G. Reddy, M. V. V. N. L. S. Rani, K. G. Kumar and B. C. Prasannakumara, “Cattaneo–Christov heat flux and non-uniform heat-source/sink impacts on radiative Oldroyd-B two-phase flow across a cone/wedge,” J. Braz. Soc. Mech. Sci. Eng., vol. 40, no. 2, pp. 1–21, 2018. DOI: 10.1007/s40430-018-1033-8.
  • J. V. R. Reddy, V. Sugunamma and N. Sandeep, “Cross diffusion effects on MHD flow over three different geometries with Cattaneo-Christov heat flux,” J. Mol. Liq., vol. 223, pp. 1234–1241, 2016. DOI: 10.1016/j.molliq.2016.09.047.
  • G. K. Ramesh, S. A. Shehzad and M. Izadi, “Falkner–Skan flow of aqueous magnetite–graphene oxide nanoliquid driven by a wedge,” Chinese J. Phys., vol. 77, pp. 733–746, 2022. DOI: 10.1016/j.cjph.2021.07.023.
  • X. Su and L. Zheng, “Hall effect on MHD flow and heat transfer of nanofluids over a stretching wedge in the presence of velocity slip and Joule heating,” Cent. Eur. J. Phys., vol. 11, no. 12, pp. 1694–1703, 2013. DOI: 10.2478/s11534-013-0331-0.
  • N. Kakar, A. Khalid, A. S. Al-Johani, N. Alshammari and I. Khan, “Melting heat transfer of a magnetized water-based hybrid nanofluid flow past over a stretching/shrinking wedge,” Case Stud. Therm. Eng., vol. 30, no. vember 2021, pp. 101674, 2022. DOI: 10.1016/j.csite.2021.101674.
  • E. Karvelas, G. Sofiadis, T. Papathanasiou and I. Sarris, “Effect of micropolar fluid properties on the blood flow in a human carotid model,” Fluids., vol. 5, no. 3, pp. 125, 2020. DOI: 10.3390/fluids5030125.
  • M. Rijal Ilias, N. Afiqah Rawi, N. Hidayah Mohd Zaki and S. Shafie, “Aligned MHD magnetic nanofluid flow past a static wedge,” IJET., vol. 7, no. 3.28, pp. 28, 2018. DOI: 10.14419/ijet.v7i3.28.20960.
  • D. Srinivasacharya, U. Mendu and K. Venumadhav, “MHD boundary layer flow of a nanofluid past a wedge,” Procedia Eng., vol. 127, no. December 2015, pp. 1064–1070, 2015. DOI: 10.1016/j.proeng.2015.11.463.
  • H. Thameem Basha, R. Sivaraj, A. Subramanyam Reddy, A. J. Chamkha and H. M. Baskonus, “A numerical study of the ferromagnetic flow of carreau nanofluid over a wedge, plate and stagnation point with a magnetic dipole,” AIMS Math., vol. 5, no. 5, pp. 4197–4219, 2020. DOI: 10.3934/math.2020268.
  • H. T. Basha and R. Sivaraj, “Numerical simulation of blood nanofluid flow over three different geometries by means of gyrotactic microorganisms: Applications to the flow in a circulatory system,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 235, no. 2, pp. 441–460, 2021. DOI: 10.1177/0954406220947454.
  • M. Ferdows, M. G. Murtaza, E. E. Tzirtzilakis and F. Alzahrani, “Numerical study of blood flow and heat transfer through stretching cylinder in the presence of a magnetic dipole,” Z. Angew. Math. Mech., vol. 100, no. 7, pp. 1–13, 2020. DOI: 10.1002/zamm.201900278.
  • J. Alam, G. Murtaza, E. Tzirtzilakis and M. Ferdows, “Biomagnetic fluid flow and heat transfer study of blood with gold nanoparticles over a stretching sheet in the presence of magnetic dipole,” Fluids., vol. 6, no. 3, pp. 113, 2021. DOI: 10.3390/fluids6030113.
  • H. Bakhti, S. Azoug and L. Azrar, “Blood flow simulation through two-dimensional complex stenosed arteries using viscoelastic Oldroyd-B fluid,” 2018 Int. Conf. Electron. Control. Optim. Comput. Sci. ICECOCS 2018, pp. 1–4, 2019. DOI: 10.1109/ICECOCS.2018.8610621.
  • D. Lu, M. Ramzan, M. Bilal, J. D. Chung, U. Farooq and S. Tahir, “On three-dimensional MHD Oldroyd-B fluid flow with nonlinear thermal radiation and homogeneous–heterogeneous reaction,” J. Braz. Soc. Mech. Sci. Eng., vol. 40, no. 8, pp. 1–11, 2018. DOI: 10.1007/s40430-018-1297-z.
  • S. Rashid, M. I. Khan, T. Hayat, M. Ayub and A. Alsaedi, “Theoretical and analytical analysis of shear rheology of Oldroyd-B fluid with homogeneous–heterogeneous reactions,” Appl. Nanosci., vol. 10, no. 8, pp. 3035–3043, 2020. DOI: 10.1007/s13204-019-01037-x.
  • S. Rashid, M. I. Khan, T. Hayat, M. Ayub and A. Alsaedi, “Darcy–Forchheimer flow of Maxwell fluid with activation energy and thermal radiation over an exponential surface,” Appl. Nanosci., vol. 10, no. 8, pp. 2965–2975, 2020. DOI: 10.1007/s13204-019-01008-2.
  • M. Hussain, A. Ali, N. Sene and M. Hussan, “Impacts chemical reaction and suction/injection on mixed convective Williamson fluid past a penetrable porous wedge,” Anal. Method. Model Nat. vol. 2022, pp. 3233964, 2022.
  • A. Abbas and M. B. Jeelani, “Darcy – Forchheimer relation influence on MHD dissipative third-grade fluid flow and heat transfer in porous medium with joule heating effects: A numerical approach,” 2022.
  • M. Madhu and N. Kishan, “MHD flow and heat transfer of Casson nanofluid over a wedge,” Mech. Ind, vol. 18, no. 2, pp. 210, 2017. DOI: 10.1051/meca/2016030.
  • M. M. Rashidi, M. Ali, N. Freidoonimehr, B. Rostami and M. A. Hossain, “Mixed convective heat transfer for MHD viscoelastic fluid flow over a porous wedge with thermal radiation,” Adv. Mech. Eng., vol. 6, pp. 735939, 2014. vol. DOI: 10.1155/2014/735939.
  • D. P. Singh, C. E. Herrera, B. Singh, S. Singh, R. K. Singh and R. Kumar, “Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications,” Mater. Sci. Eng. C. Mater. Biol. Appl., vol. 86, no. vember 2017, pp. 173–197, 2018. DOI: 10.1016/j.msec.2018.01.004.
  • S. Jafri, et al., “Biomedical applications of TiO2 nanostructures: Recent advances,” Int. J. Nanomed., vol. 15, pp. 3447–3470, 2020. DOI: 10.2147/IJN.S249441.
  • P. Bolibok, B. Szymczak, K. Roszek, A. P. Terzyk and M. Wiśniewski, “A new approach to obtaining nano-sized graphene oxide for biomedical applications,” Material. (Basel), vol. 14, no. 6, pp. 1327, 2021. DOI: 10.3390/ma14061327.
  • A. Abbasi, et al., “Heat transport exploration for hybrid nanoparticle (Cu, Fe3O4)—Based blood flow via tapered complex wavy curved channel with slip features,” Micromachine., vol. 13, no. 9, pp. 1415, 2022. DOI: 10.3390/mi13091415.
  • M. Nazeer, F. Hussain, M. I. Khan and K. Khalid, “Theoretical analysis of electrical double layer effects on the multiphase flow of Jeffrey fluid through a divergent channel with lubricated walls,” Waves Random Complex Media., pp. 1–15, 2022. DOI: 10.1080/17455030.2022.2126025.
  • S. Mondal, N. A. H. Haroun, S. K. Nandy and P. Sibanda, “MHD boundary layer flow and heat transfer of Jeffrey nanofluid over an unsteady shrinking sheet with partial slip,” J. Nanofluid., vol. 6, no. 2, pp. 343–353, 2017. DOI: 10.1166/jon.2017.1312.
  • I. S. Oyelakin, P. C. Lalramneihmawii, S. Mondal and P. Sibanda, “Analysis of double-diffusion convection on three-dimensional MHD stagnation point flow of a tangent hyperbolic Casson nanofluid,” Int. J. Ambient Energy., vol. 43, no. 1, pp. 1854–1865, 2022. DOI: 10.1080/01430750.2020.1722964.
  • S. P. Goqo, et al., “An unsteady magnetohydrodynamic Jeffery nanofluid flow over a shrinking sheet with thermal radiation and convective boundary condition using spectral quasilinearisation method,” J. Comput. Theor. Nanosci., vol. 13, no. 10, pp. 7483–7492, 2016. DOI: 10.1166/jctn.2016.5743.
  • Z. M. Mburu, M. K. Nayak, S. Mondal and P. Sibanda, “Impact of irreversibility ratio and entropy generation on three-dimensional Oldroyd-B fluid flow with relaxation–retardation viscous dissipation,” Indian J. Phys., vol. 96, no. 1, pp. 151–167, 2022. DOI: 10.1007/s12648-020-01950-w.
  • J. Cui, S. Munir, S. F. Raies, U. Farooq and R. Razzaq, “Non-similar aspects of heat generation in bioconvection from flat surface subjected to chemically reactive stagnation point flow of Oldroyd-B fluid,” Alexandria Eng. J., vol. 61, no. 7, pp. 5397–5411, 2022. DOI: 10.1016/j.aej.2021.10.056.
  • U. Khan, N. Ahmed, S. T. Mohyud-Din and B. Bin-Mohsin, “Nonlinear radiation effects on MHD flow of nanofluid over a nonlinearly stretching/shrinking wedge,” Neural. Comput. Appl., vol. 28, no. 8, pp. 2041–2050, 2017. DOI: 10.1007/s00521-016-2187-x.
  • Y.-M. Chu, et al., “Radiative thermal analysis for four types of hybrid nanoparticles subject to non-uniform heat source: Keller box numerical approach,” Case Stud. Therm. Eng., vol. 40, no. January, pp. 102474, 2022. DOI: 10.1016/j.csite.2022.102474.
  • E. Hou, et al., “Dynamics of tri-hybrid nanoparticles in the rheology of pseudo-plastic liquid with dufour and soret effects,” Micromachine. (Basel), vol. 13, no. 2, pp. 201, 2022. DOI: 10.3390/mi13020201.
  • N. Vishnu Ganesh, A. K. Abdul Hakeem and B. Ganga, “Darcy–Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects,” Ain. Shams. Eng. J., vol. 9, no. 4, pp. 939–951, 2018. DOI: 10.1016/j.asej.2016.04.019.
  • M. Bilal, A. Saeed, M. M. Selim, T. Gul, I. Ali and P. Kumam, “Comparative numerical analysis of Maxwell’s time-dependent thermo-diffusive flow through a stretching cylinder,” Case Stud. Therm. Eng., vol. 27, no. July, pp. 101301, 2021. DOI: 10.1016/j.csite.2021.101301.
  • L. F. Shampine, I. Gladwell, L. Shampine and S. Thompson, Solving ODEs with Matlab. UK: Cambridge University Press, 2003.
  • L. J. Zhang, T. Nazar, M. M. Bhatti and E. E. Michaelides, “Stability analysis on the kerosene nanofluid flow with hybrid zinc/aluminum-oxide (ZnO-Al2O3) nanoparticles under Lorentz force,” HFF., vol. 32, no. 2, pp. 740–760, 2022. DOI: 10.1108/HFF-02-2021-0103.
  • S. Das, A. S. Banu, R. N. Jana and O. D. Makinde, “Entropy analysis on MHD pseudo-plastic nanofluid flow through a vertical porous channel with convective heating,” Alexandria Eng. J., vol. 54, no. 3, pp. 325–337, 2015. DOI: 10.1016/j.aej.2015.05.003.
  • M. R. Safaei, H. R. Goshayeshi and I. Chaer, “Solar still efficiency enhancement by using graphene oxide/paraffin nano-PCM,” Energies., vol. 12, no. 10, pp. 2002, 2019. DOI: 10.3390/en12102002.
  • K. A. Yih, “Uniform suction/blowing effect on forced convection about a wedge: Uniform heat flux,” Acta Mech., vol. 128, no. 3–4, pp. 173–181, 1998. DOI: 10.1007/BF01251888.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.