Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 8
125
Views
2
CrossRef citations to date
0
Altmetric
Articles

Impact of homogeneous–heterogeneous reactions on nanofluid flow through a porous channel – A Tiwari and Das model application

ORCID Icon, , , , ORCID Icon, & show all
Pages 1317-1330 | Received 14 Nov 2022, Accepted 02 Apr 2023, Published online: 21 Apr 2023

References

  • W. Yu, H. Xie and W. Chen, “Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets,” J. Appl. Phys., vol. 107, no. 9, pp. 094317, 2010. DOI: 10.1063/1.3372733.
  • M. Azimi, A. Azimi and M. Mirzaei, “Investigation of the unsteady graphene oxide nanofluid flow between two moving plates,” J. Comp. Theo. Nano., vol. 11, no. 10, pp. 2104–2108, 2014. DOI: 10.1166/jctn.2014.3612.
  • U. Khan, N. Ahmed and S. T. Mohyud-Din, “Analysis of magnetohydrodynamic flow and heat transfer of Cu–water nanofluid between parallel plates for different shapes of nanoparticles,” Neural Comput. Appl., vol. 29, no. 10, pp. 695–703, 2018. DOI: 10.1007/s00521-016-2596-x.
  • P. K. Pattnaik, S. Mishra and M. M. Bhatti, “Duan–rach approach to study Al2O3-ethylene glycol C2H6O2 nanofluid flow based upon KKL model,” Inventions., vol. 5, no. 3, pp. 45, 2020. DOI: 10.3390/inventions5030045.
  • S. Bilal and M. Qureshi, “Mathematical analysis of hybridized ferromagnetic nanofluid with induction of copper oxide nanoparticles in permeable channel by incorporating Darcy–Forchheimer relation,” Math. Sci., pp. 1–17, 2021. DOI: 10.1007/s40096-021-00421-5.
  • S. Kumar and A. Kumar, “A comprehensive review on the heat transfer and nanofluid flow characteristics in different shaped channels,” Int. J. Ambient. Energy., vol. 42, no. 3, pp. 345–361, 2021. DOI: 10.1080/01430750.2018.1530139.
  • M. Idrees, S. A. A. Shah, B. Ahmad, B. Ali and I. Mahmood, “New insights into the heat transfer dynamics of a hybrid (SWCNT-MWCNT) nanofluid: A case of 3D rotational flow,” Int. Commun. Heat Mass Transf., vol. 138, pp. 106311, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106311.
  • S. A. A. Shah, et al., “Significance of bio-convection, MHD, thermal radiation and activation energy across Prandtl nanofluid flow: A case of stretching cylinder,” Int. Commun. Heat Mass Transf., vol. 137, pp. 106299, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106299.
  • S. A. A. Shah and A. U. Awan, “Significance of magnetized Darcy-Forchheimer stratified rotating Williamson hybrid nanofluid flow: A case of 3D sheet,” Int. Commun. Heat Mass Transf., vol. 136, pp. 106214, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106214.
  • A. U. Awan, S. A. A. Shah and B. Ali, “Bio-convection effects on Williamson nanofluid flow with exponential heat source and motile microorganism over a stretching sheet,” Chinese J. Phys., vol. 77, pp. 2795–2810, 2022. DOI: 10.1016/j.cjph.2022.04.002.
  • M. Bilal, M. Ramzan, I. Siddique and A. Sajjad, “Magneto-micropolar nanofluid flow through the convective permeable channel using Koo–Kleinstreuer–Li model,” J. Magnetism Magnetic Mater., vol. 565, pp. 170288, 2023. DOI: 10.1016/j.jmmm.2022.170288.
  • A. M. Sasidharan and K. Venkatasubbaiah, “A comprehensive comparison in the heat transfer performance of pure water-based and liquid gallium-based hybrid nanofluid flows through a minichannel, using two-phase Eulerian–Eulerian model,” Heat Transf. Eng., vol. 44, no. 2, pp. 196–209, 2023. DOI: 10.1080/01457632.2022.2034087.
  • T. Hayat, A. Tanveer, H. Yasmin and A. Alsaedi, “Homogeneous-heterogeneous reactions in peristaltic flow with convective conditions,” PLoS One, vol. 9, no. 12, pp. e113851, 2014. DOI: 10.1371/journal.pone.0113851.
  • T. Hayat, S. Ayub and A. Alsaedi, “Homogeneous-heterogeneous reactions in curved channel with porous medium,” Result. Phys., vol. 9, pp. 1455–1461, 2018. DOI: 10.1016/j.rinp.2018.04.009.
  • D. Lu, Z. Li, M. Ramzan, A. Shafee and J. D. Chung, “Unsteady squeezing carbon nanotubes-based nano-liquid flow with Cattaneo–Christov heat flux and homogeneous–heterogeneous reactions,” Appl. Nanosci., vol. 9, no. 2, pp. 169–178, 2019. DOI: 10.1007/s13204-018-0899-1.
  • V. Puneeth, S. Manjunatha and B. J. Gireesha, “Quartic autocatalysis of homogeneous and heterogeneous reactions in the bioconvective flow of radiating micropolar nanofluid between parallel plates,” Heat Transf., vol. 50, no. 6, pp. 5925–5950, 2021. DOI: 10.1002/htj.22156.
  • W. U. Jan, et al., “A parametric analysis of the effect of hybrid nanoparticles on the flow field and homogeneous-heterogeneous reaction between squeezing plates,” Adv. Math. Phys., vol. 2022, pp. 1–22, 2022. DOI: 10.1155/2022/2318436.
  • M. Yasin, S. Hina and R. Naz, “Influence of inclined magnetic field on peristaltic flow of Ag–Cu/blood hybrid nanofluid in the presence of homogeneous–heterogeneous reactions with slip condition,” Arab. J. Sci. Eng., vol. 48, no. 1, pp. 31–46, 2023. DOI: 10.1007/s13369-022-06942-y.
  • I. Haq, et al., “Impact of homogeneous and heterogeneous reactions in the presence of hybrid nanofluid flow on various geometries,” Front. Chem., vol. 10, 2022. DOI: 10.3389/fchem.2022.1032805.
  • M. Javed, F. Qadeer, N. Imran, P. Kumam and M. Sohail, “Peristaltic mechanism of Ellis fluid in curved configuration with homogeneous and heterogeneous effects,” Alexand. Eng. J., vol. 61, no. 12, pp. 10677–10688, 2022. DOI: 10.1016/j.aej.2022.03.065.
  • R. Mahato, M. Das, S. S. S. Sen and S. Shaw, “Entropy generation on unsteady stagnation‐point Casson nanofluid flow past a stretching sheet in a porous medium under the influence of an inclined magnetic field with homogeneous and heterogeneous reactions,” Heat Trans., vol. 51, no. 6, pp. 5723–5747, 2022. DOI: 10.1002/htj.22567.
  • M. Khan, M. Yasir, A. S. Alshomrani, S. Sivasankaran, Y. R. Aladwani and A. Ahmed, “Variable heat source in stagnation-point unsteady flow of magnetized Oldroyd-B fluid with cubic autocatalysis chemical reaction,” Ain Shams Eng. J., vol. 13, no. 3, pp. 101610, 2022. DOI: 10.1016/j.asej.2021.10.005.
  • S. Rehman, S. Alqahtani, S. Alshehery, S. and Ben Moussa, Hashim, “A comprehensive physical insight of inclined magnetic field on the flow of generalized Newtonian fluid within a conduit with homogeneous-heterogeneous reactions,” Arabian J. Chem., vol. 16, no. 5, pp. 104633, 2023. DOI: 10.1016/j.arabjc.2023.104633.
  • U. Khan, et al., “Stagnation point flow of a water-based graphene-oxide over a stretching/shrinking sheet under an induced magnetic field with homogeneous-heterogeneous chemical reaction,” J. Magnetism Magnetic Mater., vol. 565, pp. 170287, 2023. DOI: 10.1016/j.jmmm.2022.170287.
  • Z. Abbas, I. Mehdi, J. Hasnain, A. K. Alzahrani and M. Asma, “Homogeneous-heterogeneous reactions in MHD mixed convection fluid flow between concentric cylinders with heat generation and heat absorption,” Case Stud. Therm. Eng., vol. 42, pp. 102718, 2023. DOI: 10.1016/j.csite.2023.102718.
  • M. Z. A. Qureshi, S. Bilal, Y. M. Chu and A. B. Farooq, “Physical impact of nano-layer on nano-fluid flow due to dispersion of magnetized carbon nano-materials through an absorbent channel with thermal analysis,” J. Mol. Liquid., vol. 325, pp. 115211, 2021. DOI: 10.1016/j.molliq.2020.115211.
  • J. Majdalani, C. Zhou and C. A. Dawson, “Two-dimensional viscous flow between slowly expanding or contracting walls with weak permeability,” J. Biomech., vol. 35, no. 10, pp. 1399–1403, 2002. DOI: 10.1016/S0021-9290(02)00186-0.
  • T. Muhammad, T. Hayat, A. Alsaedi and A. Qayyum, “Hydromagnetic unsteady squeezing flow of Jeffrey fluid between two parallel plates,” Chinese J. Phys., vol. 55, no. 4, pp. 1511–1522, 2017. DOI: 10.1016/j.cjph.2017.05.008.
  • M. Bilal, H. Arshad, M. Ramzan, Z. Shah and P. Kumam, “Unsteady hybrid-nanofluid flow comprising ferrousoxide and CNTs through porous horizontal channel with dilating/squeezing walls,” Sci. Rep., vol. 11, no. 1, pp. 1–16, 2021. DOI: 10.1038/s41598-021-91188-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.