Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 9
143
Views
1
CrossRef citations to date
0
Altmetric
Articles

Conjugate natural convection along regularly ribbed vertical surfaces: A homogenization-based study

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1331-1355 | Received 21 Nov 2022, Accepted 05 Apr 2023, Published online: 05 May 2023

References

  • Y. Joshi, T. Willson, and S. J. Hazard III, “An experimental study of natural convection from an array of heated protrusions on a vertical surface in water,” J. Electron. Packag., vol. 111, no. 2, pp. 121–128, 1989. DOI: 10.1115/1.3226516.
  • G. P. Peterson and A. Ortega, “Thermal control of electronic equipment and devices,” Adv. Heat Transf., vol. 20, pp. 181–314, 1990. DOI: 10.1016/S0065-2717(08)70028-5.
  • L. Nelson, K. Sekhon, and J. Fritz, “Direct heat pipe cooling of semiconductor devices,” presented at the 3rd Int. Heat Pipe Conf., Palo Alto, California, USA, 1978. DOI: 10.2514/6.1978-450.
  • S. H. Bhavnani and A. E. Bergles, “Effect of surface geometry and orientation on laminar natural convection heat transfer from a vertical flat plate with transverse roughness elements,” Int. J. Heat Mass Transf., vol. 33, no. 5, pp. 965–981, 1990. DOI: 10.1016/0017-9310(90)90078-9.
  • G. Tanda, “Natural convection heat transfer in vertical channels with and without transverse square ribs,” Int. J. Heat Mass Transf., vol. 40, no. 9, pp. 2173–2185, 1997. DOI: 10.1016/S0017-9310(96)00246-3.
  • G. Tanda, “Natural convective heat transfer in vertical channels with low-thermal-conductivity ribs,” Int. J. Heat Fluid Flow, vol. 29, no. 5, pp. 1319–1325, 2008. DOI: 10.1016/j.ijheatfluidflow.2008.05.004.
  • M. Cavazzuti and M. A. Corticelli, “Optimization of a buoyancy chimney with a heated ribbed wall,” Heat Mass Transf., vol. 44, no. 4, pp. 421–435, 2008. DOI: 10.1007/s00231-007-0255-6.
  • L.-S. Yao, “Natural convection along a vertical complex wavy surface,” Int. J. Heat Mass Transf., vol. 49, no. 12, pp. 281–286, 2006. DOI: 10.1016/j.ijheatmasstransfer.2005.06.026.
  • J. Hærvig and H. Sørensen, “Natural convective flow and heat transfer on unconfined isothermal zigzag-shaped ribbed vertical surfaces,” Int. Commun. Heat Mass Transf., vol. 119, 104982, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104982.
  • M. Nishikawa et al., “The cooling mechanism of minuscule ribbed surfaces,” Sci. Rep., vol. 10, no. 1, 5635, 2020. DOI: 10.1038/s41598-020-62288-1.
  • Z. Zhou et al., “Passive PV module cooling under free convection through vortex generators,” Renew. Energ., vol. 190, pp. 319–329, 2022. DOI: 10.1016/j.renene.2022.03.133.
  • I. El Ghandouri, A. El Maakoul, S. Saadeddine, and M. Meziane, “Design and numerical investigations of natural convection heat transfer of a new rippling fin shape,” Appl. Therm. Eng., vol. 178, 115670, 2020. DOI: 10.1016/j.applthermaleng.2020.115670.
  • K. Zhang, M.-J. Li, F.-L. Wang, and Y.-L. He, “Experimental and numerical investigation of natural convection heat transfer of W-type fin arrays,” Int. J. Heat Mass Transf., vol. 152, 119315, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119315.
  • M. Ahmadi, G. Mostafavi, and M. Bahrami, “Natural convection from rectangular interrupted fins,” Int. J. Therm. Sci., vol. 82, pp. 62–71, 2014. DOI: 10.1016/j.ijthermalsci.2014.03.016.
  • G. Guglielmini, E. Nannei, and G. Tanda, “Natural convection and radiation heat transfer from staggered vertical fins,” Int. J. Heat Mass Transf., vol. 30, no. 9, pp. 1941–1948, 1987. DOI: 10.1016/0017-9310(87)90252-3.
  • E. N. Ahmed, A. Bottaro, and G. Tanda, “A homogenization approach for buoyancy-induced flows over micro-textured vertical surfaces,” J. Fluid Mech., vol. 941, A53, 2022. DOI: 10.1017/jfm.2022.320.
  • E. N. Ahmed, “Natural-convection heat transfer from regularly ribbed vertical surfaces: Homogenization-based simulations towards a correlation for the Nusselt number,” Numer. Heat Transf. A Appl., vol. 83, no. 9, pp. 991–1013, 2023. DOI: 10.1080/10407782.2023.2165993.
  • G. Tanda, E. N. Ahmed, and A. Bottaro, “Natural convection heat transfer from a ribbed vertical plate: Effect of rib size, pitch, and truncation,” Exp. Therm. Fluid Sci., vol. 145, 110898, 2023. DOI: 10.1016/j.expthermflusci.2023.110898.
  • A. Bejan and J. L. Lage, “The Prandtl number effect on the transition in natural convection along a vertical surface,” ASME. J. Heat Transf., vol. 112, no. 3, pp. 787–790, 1990. DOI: 10.1115/1.2910457.
  • A. Bejan, Heat Transfer. New York, NY, USA: Wiley, 1993.
  • T. Tsuji and Y. Nagano, “Characteristics of a turbulent natural convection boundary layer along a vertical flat plate,” Int. J. Heat Mass Transf., vol. 31, no. 8, pp. 1723–1734, 1988. DOI: 10.1016/0017-9310(88)90284-0.
  • J. H. Lienhard IV and J. H. Lienhard V, A Heat Transfer Textbook, 5th ed. Cambridge, MA: Phlogiston Press, 2019.
  • S. W. Churchill and H. H. S. Chu, “Correlating equations for laminar and turbulent free convection from a vertical plate,” Int. J. Heat Mass Transf., vol. 18, no. 11, pp. 1323–1329, 1975. DOI: 10.1016/0017-9310(75)90243-4.
  • B. van Leer, “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method,” J. Comput. Phys., vol. 32, no. 1, pp. 101–136, 1979. DOI: 10.1016/0021-9991(79)90145-1.
  • B. van Leer and H. Nishikawa, “Towards the ultimate understanding of MUSCL: Pitfalls in achieving third-order accuracy,” J. Comput. Phys., vol. 446, 110640, 2021. DOI: 10.1016/j.jcp.2021.110640.
  • V. Venkatakrishnan, “On the accuracy of limiters and convergence to steady state solutions,” presented at the 31st Aerospace Sci. Meet., Reno, Nevada, USA, 1993. DOI: 10.2514/6.1993-880.
  • C. Introïni, M. Quintard, and F. Duval, “Effective surface modeling for momentum and heat transfer over rough surfaces: Application to a natural convection problem,” Int. J. Heat Mass Transf., vol. 54, no. 1516, pp. 3622–3641, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.03.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.