Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 9
222
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical investigation of effective thermal conductivity of gas diffusion layer of the PEM fuel cell

, , &
Pages 1356-1378 | Received 02 Dec 2022, Accepted 05 Apr 2023, Published online: 28 Apr 2023

References

  • J. A. Kumar, P. Kalyani and R. Saravanan, “Studies on PEM fuel cells using various alcohols for low power applications,” Int. J. Electrochem. Sci., vol. 3, no. 8, pp. 961–969, 2008.
  • A. Pfrang, D. Veyret and G. Tsotridis, “Computation of thermal conductivity of gas diffusion layers of PEM fuel cells,” Conv. Cond. Heat Transfer, vol. 10, pp. 232–215, 2011. DOI: 10.5772/23657.
  • A. Jayakumar, “A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack,” Front. Energy, vol. 13, no. 2, pp. 325–338, 2019. DOI: 10.1007/s11708-019-0618-y.
  • E. Hosseinzadeh, M. Rokni, A. Rabbani and H. H. Mortensen, “Thermal and water management of low temperature proton exchange membrane fuel cell in fork-lift truck power system,” Appl. Energy, vol. 104, pp. 434–444, 2013. DOI: 10.1016/j.apenergy.2012.11.048.
  • T. J. Bvumbe, et al., “Review on management, mechanisms and modelling of thermal processes in PEMFC,” Hydrog. Fuel Cells, vol. 1, no. 1, pp. 1–20, 2016. DOI: 10.1515/hfc-2016-0001.
  • J. Yablecki, A. Nabovati and A. Bazylak, “Modeling the effective thermal conductivity of an anisotropic gas diffusion layer in a polymer electrolyte membrane fuel cell,” J. Electrochem. Soc., vol. 159, no. 6, pp. B647–B653, 2012. DOI: 10.1149/2.013206jes.
  • H. Sadeghifar, N. Djilali and M. Bahrami, “Effect of Polytetrafluoroethylene (PTFE) and micro porous layer (MPL) on thermal conductivity of fuel cell gas diffusion layers: Modeling and experiments,” J. Power Sources, vol. 248, pp. 632–641, 2014. DOI: 10.1016/j.jpowsour.2013.09.136.
  • G. Athanasaki, A. Jayakumar and A. M. Kannan, “Gas diffusion layers for PEM fuel cells: Materials, properties and manufacturing – A review,” Int. J. Hydrog. Energy, vol. 48, no. 6, pp. 2294–2313, 2023. DOI: 10.1016/j.ijhydene.2022.10.058.
  • W. Q. Li and Z. G. Qu, “Experimental study of effective thermal conductivity of stainless steel fiber felt,” Appl. Therm. Eng., vol. 86, pp. 119–126, 2015. DOI: 10.1016/j.applthermaleng.2015.04.024.
  • N. Zamel, E. Litovsky, X. Li and J. Kleiman, “Measurement of the through-plane thermal conductivity of carbon paper diffusion media for the temperature range from- 50 to+ 120° C,” Int. J. Hydrog. Energy, vol. 36, no. 19, pp. 12618–12625, 2011. DOI: 10.1016/j.ijhydene.2011.06.097.
  • N. Zamel, E. Litovsky, S. Shakhshir, X. Li and J. Kleiman, “Measurement of in-plane thermal conductivity of carbon paper diffusion media in the temperature range of- 20° C to+ 120° C,” Appl. Energy, vol. 88, no. 9, pp. 3042–3050, 2011. DOI: 10.1016/j.apenergy.2011.02.037.
  • G. Karimi, X. Li and P. Teertstra, “Measurement of through-plane effective thermal conductivity and contact resistance in PEM fuel cell diffusion media,” Electrochim. Acta, vol. 55, no. 5, pp. 1619–1625, 2010. DOI: 10.1016/j.electacta.2009.10.035.
  • L. Chen, Y.-F. Wang and W.-Q. Tao, “Experimental study on the effect of temperature and water content on the thermal conductivity of gas diffusion layers in proton exchange membrane fuel cell,” Therm. Sci. Eng. Prog., vol. 19, pp. 100616, 2020. DOI: 10.1016/j.apenergy.2022.119352.
  • J. Ramousse, S. Didierjean, O. Lottin and D. Maillet, “Estimation of the effective thermal conductivity of carbon felts used as PEMFC Gas Diffusion Layers,” Int. J. Therm. Sci., vol. 47, no. 1, pp. 1–6, 2008. DOI: 10.1016/j.ijthermalsci.2007.01.018.
  • O. Burheim, P. J. S. Vie, J. G. Pharoah and S. Kjelstrup, “Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell,” J. Power Sources, vol. 195, no. 1, pp. 249–256, 2010. DOI: 10.1016/j.jpowsour.2009.06.077.
  • P. Teertstra, G. Karimi and X. Li, “Measurement of in-plane effective thermal conductivity in PEM fuel cell diffusion media,” Electrochim. Acta, vol. 56, no. 3, pp. 1670–1675, 2011. DOI: 10.1016/j.electacta.2010.06.043.
  • G. Xu, J. M. LaManna, J. T. Clement and M. M. Mench, “Direct measurement of through-plane thermal conductivity of partially saturated fuel cell diffusion media,” J. Power Sources, vol. 256, pp. 212–219, 2014. DOI: 10.1016/j.jpowsour.2014.01.015.
  • R. Bock, et al., “Thermal conductivity and compaction of GDL-MPL interfacial composite material,” J. Electrochem. Soc., vol. 165, no. 7, pp. F514–F525, 2018. DOI: 10.1149/2.0751807jes.
  • H. Wei, H. Bao and X. Ruan, “Perspective: Predicting and optimizing thermal transport properties with machine learning methods,” Energy AI, vol. 8, pp. 100153, 2022. DOI: 10.1016/j.egyai.2022.100153.
  • R. Ding, et al., “Application of machine learning in optimizing proton exchange membrane fuel cells: A review,” Energy AI, vol. 9, pp. 100170, 2022. DOI: 10.1016/j.egyai.2022.100170.
  • L. Li, R. Mei and J. F. Klausner, “Heat transfer evaluation on curved boundaries in thermal lattice Boltzmann equation method,” J. Heat Transfer, vol. 136, no. 1, pp. 012403, 2014. DOI: 10.1115/1.4025046.
  • X. Ke and Y. Duan, “A spatially-varying relaxation parameter Lattice Boltzmann Method (SVRP-LBM) for predicting the effective thermal conductivity of composite material,” Comput. Mater. Sci., vol. 169, pp. 109080, 2019. DOI: 10.1016/j.commatsci.2019.109080.
  • H. Tahmooressi, A. Kasaeian, A. Yavarinasab, A. Tarokh, M. Ghazi and M. Hoorfar, “Numerical simulation of nanoparticles size/aspect ratio effect on thermal conductivity of nanofluids using lattice Boltzmann method,” Int. Commun. Heat Mass Transfer, vol. 120, pp. 105033, 2021. DOI: 10.1016/j.icheatmasstransfer.2020.105033.
  • C. Liu, R. Qian, Z. Liu, G. Liu and Y. Zhang, “Multi-scale modelling of thermal conductivity of phase change material/recycled cement paste incorporated cement-based composite material,” Mater. Des., vol. 191, pp. 108646, 2020. DOI: 10.1016/j.matdes.2020.108646.
  • N. Wang, I. Kaur, P. Singh and L. Li, “Prediction of effective thermal conductivity of porous lattice structures and validation with additively manufactured metal foams,” Appl. Therm. Eng., vol. 187, pp. 116558, 2021. DOI: 10.1016/j.applthermaleng.2021.116558.
  • J. Yablecki, J. Hinebaugh and A. Bazylak, “Effect of liquid water presence on PEMFC GDL effective thermal conductivity,” J. Electrochem. Soc., vol. 159, no. 12, pp. F805–F809, 2012. DOI: 10.1149/2.014212jes.
  • J. Lu, A. Kan, W. Zhu and Y. Yuan, “Numerical investigation on effective thermal conductivity of fibrous porous medium under vacuum using Lattice-Boltzmann method,” Int. J. Therm. Sci., vol. 160, pp. 106682, 2021. DOI: 10.1016/j.ijthermalsci.2020.106682.
  • X. Qin, J. Cai, Y. Zhou and Z. Kang, “Lattice Boltzmann simulation and fractal analysis of effective thermal conductivity in porous media,” Appl. Therm. Eng., vol. 180, pp. 115562, 2020. DOI: 10.1016/j.applthermaleng.2020.115562.
  • X. He and L.-S. Luo, “Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation,” Phys. Rev. E, vol. 56, no. 6, pp. 6811–6817, 1997. DOI: 10.1103/PhysRevE.56.6811.
  • S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flows,” Annu. Rev. Fluid Mech., vol. 30, no. 1, pp. 329–364, 1998. DOI: 10.1146/annurev.fluid.30.1.329.
  • A. L. Kupershtokh and D. A. Medvedev, “Lattice Boltzmann equation method in electrohydrodynamic problems,” J. Electrostat., vol. 64, no. 7–9, pp. 581–585, 2006. DOI: 10.1016/j.elstat.2005.10.012.
  • M. K. Ikeda, P. R. Rao and L. A. Schaefer, “A thermal multicomponent lattice Boltzmann model,” Comput. Fluids, vol. 101, pp. 250–262, 2014. DOI: 10.1016/j.compfluid.2014.06.006.
  • W. Zhu, M. Wang and H. Chen, “Study on multicomponent pseudo-potential model with large density ratio and heat transfer,” Int. Commun. Heat Mass Transf., vol. 87, pp. 183–191, 2017. DOI: 10.1016/j.icheatmasstransfer.2017.07.007.
  • D. Zhang, S. Li, Y. Li, N. Mei, H. Pu and S. Jiao, “Numerical investigation on the mechanism of multicomponent boiling in porous media using lbm at pore scale,” ES Energy Environ., vol. 12, no. 2, pp. 108–116, 2020. DOI: 10.30919/esee8c940.
  • C. Zhang, P. Cheng and W. J. Minkowycz, “Lattice Boltzmann simulation of forced condensation flow on a horizontal cold surface in the presence of a non-condensable gas,” Int. J. Heat Mass Transf., vol. 115, pp. 500–512, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.08.005.
  • P. Yuan and L. Schaefer, “Equations of state in a lattice Boltzmann model,” Phys. Fluids, vol. 18, no. 4, pp. 042101, 2006. DOI: 10.1063/1.2187070.
  • M. Li, C. Huber, Y. Mu and W. Tao, “Lattice Boltzmann simulation of condensation in the presence of noncondensable gas,” Int. J. Heat Mass Transf., vol. 109, pp. 1004–1013, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.02.046.
  • X. Shan and H. Chen, “Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 49, no. 4, pp. 2941–2948, 1994. DOI: 10.1103/PhysRevE.49.2941.
  • S.-H. Lee, J. H. Nam, C.-J. Kim and H. M. Kim, “Effect of fiber orientation on Liquid–Gas flow in the gas diffusion layer of a polymer electrolyte membrane fuel cell,” Int. J. Hydrog. Energy, vol. 46, no. 68, pp. 33957–33968, 2021. DOI: 10.1016/j.ijhydene.2021.07.205.
  • A. L. Kupershtokh, D. A. Medvedev and D. Karpov, “On equations of state in a lattice Boltzmann method,” Comput. Math. Appl., vol. 58, no. 5, pp. 965–974, 2009. DOI: 10.1016/j.camwa.2009.02.024.
  • C. D. Stiles and Y. Xue, “High density ratio lattice Boltzmann method simulations of multicomponent multiphase transport of H2O in air,” Comput. Fluids, vol. 131, pp. 81–90, 2016. DOI: 10.1016/j.compfluid.2016.03.003.
  • J. Ross-Jones, M. Gaedtke, S. Sonnick, M. Rädle, H. Nirschl and M. J. Krause, “Conjugate heat transfer through nano scale porous media to optimize vacuum insulation panels with lattice Boltzmann methods,” Comput. Math. Appl., vol. 77, no. 1, pp. 209–221, 2019. DOI: 10.1016/j.camwa.2018.09.023.
  • S. Gong and P. Cheng, “Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling,” Int. J. Heat Mass Transf., vol. 64, pp. 122–132, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.03.058.
  • C. Zhang and P. Cheng, “Mesoscale simulations of boiling curves and boiling hysteresis under constant wall temperature and constant heat flux conditions,” Int. J. Heat Mass Transf., vol. 110, pp. 319–329, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.03.039.
  • Y. Shi, J. Xiao, S. Quan, M. Pan and R. Yuan, “Fractal model for prediction of effective thermal conductivity of gas diffusion layer in proton exchange membrane fuel cell,” J. Power Sources, vol. 185, no. 1, pp. 241–247, 2008. DOI: 10.1016/j.jpowsour.2008.07.010.
  • H. Liu, “The Maxwell crossover and the van der Waals equation of state,” arXiv preprint arXiv:2010.14739, 2020. DOI: 10.48550/arXiv.2010.14739.
  • T. Lee and C.-L. Lin, “A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio,” J. Comput. Phys., vol. 206, no. 1, pp. 16–47, 2005. DOI: 10.1016/j.jcp.2004.12.001.
  • M. C. Sukop and D. T. Thorne, Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. New York: Springer Berlin Heidelberg, 2006.
  • H. Huang, Z. Li, S. Liu and X. Lu, “Shan-and-Chen-type multiphase lattice Boltzmann study of viscous coupling effects for two-phase flow in porous media,” Int. J. Numer. Meth. Fluids, vol. 61, no. 3, pp. 341–354, 2009. DOI: 10.1002/fld.1972.
  • R. G. Deissler and J. S. Boegli, “An investigation of effective thermal conductivities of powders in various gases,” Trans. Am. Soc. Mech. Eng., vol. 80, no. 7, pp. 1417–1423, 1958. DOI: 10.1115/1.4012740.
  • K. B. Kiradjiev, S. A. Halvorsen, R. A. Van Gorder and S. D. Howison, “Maxwell-type models for the effective thermal conductivity of a porous material with radiative transfer in the voids,” Int. J. Therm. Sci., vol. 145, pp. 106009, 2019. DOI: 10.1016/j.ijthermalsci.2019.106009.
  • J. C. Maxwell, A Treatise on Electricity and Magnetism: Pt. III. Magnetism. pt. IV. Electromagnetism, vol. 2. Oxford: Clarendon Press, 1881.
  • Q. Zou and X. He, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model,” Phys. Fluids, vol. 9, no. 6, pp. 1591–1598, 1997. DOI: 10.1063/1.869307.
  • N. Alhazmi, D. B. Ingham, M. S. Ismail, K. J. Hughes, L. Ma and M. Pourkashanian, “Effect of the anisotropic thermal conductivity of GDL on the performance of PEM fuel cells,” Int. J. Hydrog. Energy, vol. 38, no. 1, pp. 603–611, 2013. DOI: 10.1016/j.ijhydene.2012.07.007.
  • S. Didari, T. A. Harris, W. Huang, S. M. Tessier and Y. Wang, “Feasibility of periodic surface models to develop gas diffusion layers: A gas permeability study,” Int. J. Hydrog. Energy, vol. 37, no. 19, pp. 14427–14438, 2012. DOI: 10.1016/j.ijhydene.2012.06.100.
  • C. Ziegler and D. Gerteisen, “Validity of two-phase polymer electrolyte membrane fuel cell models with respect to the gas diffusion layer,” J. Power Sources, vol. 188, no. 1, pp. 184–191, 2009. DOI: 10.1016/j.jpowsour.2008.11.071.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.