Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 9
146
Views
4
CrossRef citations to date
0
Altmetric
Articles

Nonsimilar solution of hybrid nanofluid over curved stretching surface with viscous dissipation: A numerical study

, &
Pages 1379-1398 | Received 25 Jan 2023, Accepted 02 Apr 2023, Published online: 08 May 2023

References

  • M. I. Khan et al., “Estimation of entropy optimization in Darcy-Forchheimer flow of Carreau-Yasuda fluid (non-Newtonian) with first order velocity slip,” Alexan. Eng. J., vol. 59, pp. 3953–3962, 2020.
  • B. Ali et al., “Finite element study of magnetohydrodynamics (MHD) and activation energy in Darcy–Forchheimer rotating flow of Casson Carreau nanofluid,” Process, vol. 8, no. 9, pp. 1185, 2020. DOI: 10.3390/pr8091185.
  • T. Salahuddin et al., “Internal energy change in Darcy-Forchheimer Carreau fluid model past a vertical stretching sheet with magnetic dipole and variable thermo-physical properties,” Phy. Scr., vol. 96, no. 2, 2020.
  • M. Khan et al., “Chemical reaction for Carreau-Yasuda nanofluid flow past a nonlinear stretching sheet considering Joule heating,” Res. Phys., vol. 8, pp. 1124–1130, 2018. DOI: 10.1016/j.rinp.2018.01.018.
  • K. Ramesh et al., “Simultaneous effects of MHD and Joule heating on the fundamental flows of a Casson liquid with slip boundaries,” Propuls. Power Res., vol. 10, no. 2, pp. 118–129, 2021. DOI: 10.1016/j.jppr.2021.05.002.
  • S. U. Haq et al., “Convective flow of Carreau fluid over a curved surface in presence of thermophoresis and Brownian motion,” Waves Random Complex Media, pp. 1–15, 2022. DOI: 10.1080/17455030.2022.2053239.
  • I. Khan et al., “Magnetohydrodynamics Carreau nanofluid flow over an inclined convective heated stretching cylinder with Joule heating,” Res. Phys., vol. 7, pp. 4001–4012, 2017. DOI: 10.1016/j.rinp.2017.10.015.
  • N. T. M. Eldabe et al., “Peristaltic transport of magnetohydrodynamic Carreau nanofluid with heat and mass transfer inside asymmetric channel,” AJCM., vol. 07, no. 01, pp. 1–20, 2017. DOI: 10.4236/ajcm.2017.71001.
  • J. V. R. Reddy et al., “Simultaneous impacts of Joule heating and variable heat source/sink on MHD 3D flow of Carreau-nanoliquids with temperature dependent viscosity,” Nonlinear Eng., vol. 8, no. 1, 2018.
  • M. Ashraf, A. Khan, and Z. Ullah, “The convective flow of Carreau fluid over a curved stretching surface with homogeneous-heterogeneous reactions and viscous dissipation,” Waves Random Complex Media, pp. 1–17, 2022. DOI: 10.1080/17455030.2022.2032867.
  • S. Shoeibi, H. Kargarsharifabad, M. Sharifpur, and J. P. Meyer, “Hybrid nanofluid natural convection in the square enclosure with periodic magnetic field: Experimental investigation and economic evaluation,” J. Therm. Anal. Calorim., vol. 148, no. 6, pp. 2527–2545, 2023. DOI: 10.1007/s10973-022-11924-1.
  • M. Falsafi and H. Kargarsharifabad, “Numerical study of ferrofluid forced convection heat transfer in tube with magnetic field,” JCME., vol. 34, no. 1, pp. 11–25, 2015. DOI: 10.18869/acadpub.jcme.34.1.11.
  • M. Sheikholeslami, “Numerical analysis of solar energy storage within a double pipe utilizing nanoparticles for expedition of melting,” Sol. Energy Mater. Solar Cells, vol. 245, pp. 111856, 2022. DOI: 10.1016/j.solmat.2022.111856.
  • A. Rauf, A. Mushtaq, N. A. Shah, and T. Botmart, “Heat transfer and hybrid ferrofluid flow over a nonlinearly stretchable rotating disk under the influence of an alternating magnetic field,” Sci. Rep., vol. 12, no. 1, pp. 17548, 2022. DOI: 10.1038/s41598-022-21784-2.
  • G. Sucharitha, K. Vajravelu, and P. Lakshminarayana, “Magnetohydrodynamic nanofluid flow in a non-uniform aligned channel with joule heating,” J. Nanofluids, vol. 8, no. 7, pp. 1373–1384, 2019. DOI: 10.1166/jon.2019.1694.
  • K. Ramesh, A. Patel, and M. Rawal, “Electroosmosis and transverse magnetic effects on radiative tangent hyperbolic nanofluid flow through porous medium,” Int. J. Ambient Energy, pp. 1–8, 2021. DOI: 10.1080/01430750.2020.1862912.
  • W. Ahmed et al., “Heat transfer growth of sonochemically synthesized novel mixed metal oxide ZnO + Al2O3+ TiO2/DW based ternary hybrid nanofluids in a square flow,” Renew. Sustain. Energy Rev., vol. 145, pp. 111025, 2021. DOI: 10.1016/j.rser.2021.111025.
  • T. Gul and A. Saeed, “Nonlinear mixed convection couple stress tri-hybrid nanofluids flow in a Darcy–Forchheimer porous medium over a nonlinear stretching surface,” Waves Random Complex Media, pp. 1–18, 2022. DOI: 10.1080/17455030.2022.2077471.
  • A. B. Jafar et al., “MHD radiative nanofluid flow induced by a nonlinear stretching sheet in a porous medium,” Heliyon, vol. 6, no. 6, pp. e04201, 2020. DOI: 10.1016/j.heliyon.2020.e04201.
  • S. Nadeem et al., “Numerical analysis of water based CNTs flow of micropolar fluid through rotating frame,” Comput. Methods Prog. Biomed., vol. 186, pp. 105194, 2020. DOI: 10.1016/j.cmpb.2019.105194.
  • S. Ghahremanian et al., “Investigation the nanofluid flow through a nanochannel to study the effect of nanoparticles on the condensation phenomena,” J. Mol. Liq., vol. 311, pp. 113310, 2020. DOI: 10.1016/j.molliq.2020.113310.
  • Z. Abdel-Nour et al., “Magnetohydrodynamic natural convection of hybrid nanofluid in a porous enclosure: Numerical analysis of the entropy generation,” J. Therm. Anal. Calorim., vol. 141, no. 5, pp. 1981–1992, 2020. DOI: 10.1007/s10973-020-09690-z.
  • T. Tayebi and A. J. Chamkha, “Entropy generation analysis due to MHD natural convection flow in a cavity occupied with hybrid nanofluid and equipped with a conducting hollow cylinder,” J. Therm. Anal. Calorim., vol. 139, no. 3, pp. 2165–2179, 2020. DOI: 10.1007/s10973-019-08651-5.
  • S. Hussain et al., “Impact of magnetic field and entropy generation of Casson fluid on double diffusive natural convection in staggered cavity,” Int. Commun. Heat Mass Transf., vol. 127, pp. 105520, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105520.
  • A. Bahmani and H. Kargarsharifabad, “MHD free convection of non-Newtonian power-law fluids over a uniformly heated horizontal plate,” Therm. Sci., vol. 24, no. 2 Part B, pp. 1323–1334, 2020. DOI: 10.2298/TSCI190102110B.
  • M. Sheikholeslami, “Analyzing melting process of paraffin through the heat storage with honeycomb configuration utilizing nanoparticles,” J. Energy Storage, vol. 52, pp. 104954, 2022. DOI: 10.1016/j.est.2022.104954.
  • M. Khan et al., “Heat and mass transfer of Williamson nanofluid flow yield by an inclined Lorentz force over a nonlinear stretching sheet,” Res. Phys., vol. 8, pp. 862–868, 2018. DOI: 10.1016/j.rinp.2018.01.005.
  • W. Owhaib and W. Al-Kouz, “Three-dimensional numerical analysis of flow and heat transfer of bi-directional stretched nanofluid film exposed to an exponential heat generation using modified Buongiorno model,” Sci. Rep., vol. 12, no. 1, pp. 10060–10120, 2022. DOI: 10.1038/s41598-022-13351-6.
  • M. Aleem et al., “Heat transfer analysis of channel flow of MHD Jeffrey fluid subject to generalized boundary conditions,” Eur. Phys. J. Plus, vol. 135, no. 1, pp. 1–15, 2020. DOI: 10.1140/epjp/s13360-019-00071-6.
  • M. H. Dibaei and H. Kargarsharifabad, “New achievements in Fe3O4 nanofluid fully developed forced convection heat transfer under the effect of a magnetic field: An experimental study,” J. Heat Mass Transf. Res., vol. 4, no. 1, pp. 1–10, 2017.
  • M. Sheikholeslami and M. Jafaryar, “Performance of energy storage unit equipped with vase-shaped fins including nanoparticle enhanced paraffin,” J. Energy Storage, vol. 58, pp. 106416, 2023. DOI: 10.1016/j.est.2022.106416.
  • M. Sajid et al., “Stretching a curved surface in a viscous fluid,” Chin. Phys. Lett., vol. 27, no. 2, pp. 024703, 2010. DOI: 10.1088/0256-307X/27/2/024703.
  • B. Takabi and S. Salehi, “Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid,” Adv. Mech. Eng., vol. 6, pp. 147059, 2014. DOI: 10.1155/2014/147059.
  • F. M. Alharbi et al., “Bioconvection due to gyrotactic microorganisms in couple stress hybrid nanofluid laminar mixed convection incompressible flow with magnetic nanoparticles and chemical reaction as carrier for targeted drug delivery through porous stretching sheet,” Molecules, vol. 26, no. 13, pp. 3954, 2021. DOI: 10.3390/molecules26133954.
  • N. S. Khashi et al., “Dual solutions of bioconvection hybrid nanofluid flow due to gyrotactic microorganisms towards a vertical plate,” Chin. J. Phys., vol. 72, pp. 461–474, 2021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.