Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 9
215
Views
2
CrossRef citations to date
0
Altmetric
Articles

Numerical study of the intensification of single-phase heat transfer in a sandwich-like channel using staggered miniature-pin fins

ORCID Icon & ORCID Icon
Pages 1399-1432 | Received 14 Nov 2022, Accepted 10 Apr 2023, Published online: 24 Apr 2023

References

  • Z. Lu, X. Z. Meng, L. C. Wei, W. Y. Hu, L. Y. Zhang and L. W. Jin, “Thermal management of densely-packed EV battery with forced air cooling strategies,” Energy Procedia, vol. 88, pp. 682–688, Jun 2016. DOI: 10.1016/j.egypro.2016.06.098.
  • Y. Lyu, A. R. M. Siddique, S. H. Majid, M. Biglarbegian, S. A. Gadsden and S. Mahmud, “Electric vehicle battery thermal management system with thermoelectric cooling,” Energy Reports, vol. 5, pp. 822–827, 2019. DOI: 10.1016/j.egyr.2019.06.016.
  • T. M. Bandhauer, S. Garimella and T. F. Fuller, “A critical review of thermal issues in lithium-ion batteries,” J. Electrochem. Soc., vol. 158, no. 3, pp. R1, 2011. DOI: 10.1149/1.3515880.
  • A. A. Pesaran, “Battery thermal models for hybrid vehicle simulations,” J. Power Sources, vol. 110, no. 2, pp. 377–382, Aug 2002. DOI: 10.1016/S0378-7753(02)00200-8.
  • H. M. Ali and W. Arshad, “Thermal performance investigation of staggered and inline pin fin heat sinks using water based rutile and anatase TiO2 nanofluids,” Energy Convers. Manag., vol. 106, pp. 793–803, Dec 2015. DOI: 10.1016/j.enconman.2015.10.015.
  • M. I. Hasan, “Investigation of flow and heat transfer characteristics in micro pin fin heat sink with nanofluid,” Appl. Thermal Eng., vol. 63, no. 2, pp. 598–607, Feb 2014. DOI: 10.1016/j.applthermaleng.2013.11.059.
  • M. Bahiraei, S. Heshmatian, M. Goodarzi and H. Moayedi, “CFD analysis of employing a novel ecofriendly nanofluid in a miniature pin fin heat sink for cooling of electronic components: Effect of different configurations,” Adv. Powder Technol., vol. 30, no. 11, pp. 2503–2516, Nov 2019. DOI: 10.1016/j.apt.2019.07.029.
  • J. Hua, G. Li, X. Zhao and Q. Li, “Experimental study on thermal performance of micro pin fin heat sinks with various shapes,” Heat Mass Transfer, vol. 53, no. 3, pp. 1093–1104, Mar 2017. DOI: 10.1007/s00231-016-1880-8.
  • J. Mohammadpour, F. Salehi, A. Lee and L. Brandt, “Nanofluid heat transfer in a microchannel heat sink with multiple synthetic jets and protrusions,” Int. J. Thermal Sci., vol. 179, pp. 107642, 2022. DOI: 10.1016/j.ijthermalsci.2022.107642.
  • J. Mohammadpour, S. Husain, F. Salehi and A. Lee, “Machine learning regression-CFD models for the nanofluid heat transfer of a microchannel heat sink with double synthetic jets,” Int. Commun. Heat Mass Transfer, vol. 130, pp. 105808, 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105808.
  • S. Hosseinzadeh, K. Hosseinzadeh, A. Hasibi and D. D. Ganji, “Thermal analysis of moving porous fin wetted by hybrid nanofluid with trapezoidal, concave parabolic and convex cross sections,” Case Stud. Thermal Eng., vol. 30, pp. 101757, 2022. DOI: 10.1016/j.csite.2022.101757.
  • M. Fallah Najafabadi, H. Talebi Rostami, K. Hosseinzadeh and D. Domiri Ganji, “Thermal analysis of a moving fin using the radial basis function approximation,” Heat Transfer, vol. 50, no. 8, pp. 7553–7567, 2021. DOI: 10.1002/htj.22242.
  • S. A. Atouei, K. Hosseinzadeh, M. Hatami, S. E. Ghasemi, S. A. R. Sahebi and D. D. Ganji, “Heat transfer study on convective-radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods,” Appl. Thermal Eng., vol. 89, pp. 299–305, 2015. DOI: 10.1016/j.applthermaleng.2015.05.084.
  • B. Jalili, N. Aghaee, P. Jalili and D. Domiri Ganji, “Novel usage of the curved rectangular fin on the heat transfer of a double-pipe heat exchanger with a nanofluid,” Case Stud. Thermal Eng., vol. 35, pp. 102086, 2022. DOI: 10.1016/j.csite.2022.102086.
  • P. Jalili, K. Kazerani, B. Jalili and D. D. Ganji, “Investigation of thermal analysis and pressure drop in non-continuous helical baffle with different helix angles and hybrid nano-particles,” Case Stud. Thermal Eng., vol. 36, pp. 102209, 2022. DOI: 10.1016/j.csite.2022.102209.
  • T.-C. Hung, Y.-X. Huang and W.-M. Yan, “Thermal performance analysis of porous-microchannel heat sinks with different configuration designs,” Int. J. Heat Mass Transfer, vol. 66, pp. 235–243, Nov 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.07.019.
  • S. R. Reddy, et al., “Multi-objective optimization of micro pin-fin arrays for cooling of high heat flux electronics with a hot spot,” Heat Transfer Eng., vol. 38, no. 14–15, pp. 1235–1246, Oct 2017. DOI: 10.1080/01457632.2016.1242953.
  • G. Lu and X. Zhai, “Analysis on heat transfer and pressure drop of a microchannel heat sink with dimples and vortex generators,” Int. J. Thermal Sci., vol. 145, pp. 105986, 2019. DOI: 10.1016/j.ijthermalsci.2019.105986.
  • H. Bucak and F. Yilmaz, “Heat transfer augmentation using periodically spherical dimple-protrusion patterned walls of twisted tape,” Int. J. Thermal Sci., vol. 171, pp. 107211, 2022. DOI: 10.1016/j.ijthermalsci.2021.107211.
  • W. Qu, “Thermal and thermomechanical phenomena in electronic systems,” in ITHERM 2008, 11th Intersociety Conference.
  • D. Ansari, A. Husain and K.-Y. Kim, “Optimization and comparative study on oblique- and rectangular-fin microchannel heat sinks,” J. Thermophys. Heat Transfer, vol. 24, no. 4, pp. 849–852, Oct 2010. DOI: 10.2514/1.50162.
  • R. Kumar, R. Abiev, G. Ribatski, S. Abdullah and M. Vasilev, “New approach of triumphing temperature nonuniformity and heat transfer performance augmentation in micro pin fin heat sinks,” J. Heat Transfer, vol. 142, no. 6, pp. 1–12, 2020.
  • Y.-J. Lee, P.-S. Lee and S.-K. Chou, “Enhanced microchannel heat sinks using oblique fins,” in ASME 2009 InterPACK Conference, Volume 2, 2009. vol. 2, pp. 253–260. DOI: 10.1115/InterPACK2009-89059.
  • D. Mei, X. Lou, M. Qian, Z. Yao, L. Liang and Z. Chen, “Effect of tip clearance on the heat transfer and pressure drop performance in the micro-reactor with micro-pin–fin arrays at low Reynolds number,” Int. J. Heat Mass Transfer, vol. 70, pp. 709–718, Mar 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.11.060.
  • J. F. Tullius, T. K. Tullius and Y. Bayazitoglu, “Optimization of short micro pin fins in minichannels,” Int. J. Heat Mass Transfer, vol. 55, no. 15–16, pp. 3921–3932, Jul 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.03.022.
  • E. M. Sparrow, J. P. Abraham and P. W. Chevalier, “A DOS-enhanced numerical simulation of heat transfer and fluid flow through an array of offset fins with conjugate heating in the bounding solid,” J. Heat Transfer, vol. 127, no. 1, pp. 27–33, 2005. DOI: 10.1115/1.1800531.
  • K. A. Moores and Y. K. Joshi, “Effect of tip clearance on the thermal and hydrodynamic performance of a shrouded pin fin array,” J. Heat Transfer, vol. 125, no. 6, pp. 999–1006, Dec 2003. DOI: 10.1115/1.1621897.
  • K. A. Moores, J. Kim and Y. K. Joshi, “Heat transfer and fluid flow in shrouded pin fin arrays with and without tip clearance,” Int. J. Heat Mass Transfer, vol. 52, no. 25–26, pp. 5978–5989, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.08.005.
  • A. Rozati, D. K. Tafti and N. E. Blackwell, “Effect of pin tip clearance on flow and heat transfer at low Reynolds number,” J. Heat Transfer, vol. 130, no. 7, pp. 1–10, 2008.
  • M. Reyes, J. R. Arias, A. Velazquez and J. M. Vega, “Experimental study of heat transfer and pressure drop in micro-channel based heat sinks with tip clearance,” Appl. Thermal Eng., vol. 31, no. 5, pp. 887–893, 2011. DOI: 10.1016/j.applthermaleng.2010.11.011.
  • E. M. Sparrow, J. W. Ramsey and C. A. C. Altemani, “Experiments on in-line pin fin arrays-and performance comparisons with staggered arrays,” J. Heat Transfer, vol. 102, no. 1, pp. 44–50, 1980. DOI: 10.1115/1.3244247.
  • Z. Qian, Y. Li and Z. Rao, “Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling,” Energy Convers. Manag., vol. 126, pp. 622–631, 2016. DOI: 10.1016/j.enconman.2016.08.063.
  • S. Mousavi, M. Siavashi and A. Zadehkabir, “A new design for hybrid cooling of Li-ion battery pack utilizing PCM and mini channel cold plates,” Appl. Thermal Eng., vol. 197, pp. 117398, 2021. DOI: 10.1016/j.applthermaleng.2021.117398.
  • H. Liu, E. Chika and J. Zhao, “Investigation into the effectiveness of nanofluids on the mini-channel thermal management for high power lithium ion battery,” Appl. Thermal Eng., vol. 142, pp. 511–523, 2018. DOI: 10.1016/j.applthermaleng.2018.07.037.
  • J. Xu, Z. Chen, J. Qin and P. Minqiang, “A lightweight and low-cost liquid-cooled thermal management solution for high energy density prismatic lithium-ion battery packs,” Appl. Thermal Eng., vol. 203, pp. 117871, 2022. DOI: 10.1016/j.applthermaleng.2021.117871.
  • J. Smith, R. Singh, M. Hinterberger and M. Mochizuki, “Battery thermal management system for electric vehicle using heat pipes,” Int. J. Thermal Sci., vol. 134, pp. 517–529, 2018. DOI: 10.1016/j.ijthermalsci.2018.08.022.
  • P. Kumar, D. Chaudhary, P. Varshney, U. Varshney, S. M. Yahya and Y. Rafat, “Critical review on battery thermal management and role of nanomaterial in heat transfer enhancement for electrical vehicle application,” J. Energy Storage, vol. 32, pp. 102003, 2020. DOI: 10.1016/j.est.2020.102003.
  • G. Zhao, X. Wang and M. Negnevitsky, “Connecting battery technologies for electric vehicles from battery materials to management,” iScience, vol. 25, no. 2, pp. 103744, 2022. DOI: 10.1016/j.isci.2022.103744.
  • ANSYS. ANSYS Fluent Theory Guide, 15th ed. Canonsburg, PA: ANSYS, Inc, 2021.
  • S. Benhamadouche, “On the use of (U)RANS and LES approaches for turbulent incompressible single phase flows in nuclear engineering applications,” Nucl. Eng. Des., vol. 312, pp. 2–11, Feb 2017. DOI: 10.1016/j.nucengdes.2016.11.002.
  • B. Jalili and P. Jalili, “Numerical analysis of airflow turbulence intensity effect on liquid jet trajectory and breakup in two-phase cross flow,” Alexandria Eng. J., vol. 68, pp. 577–585, 2023. DOI: 10.1016/j.aej.2023.01.059.
  • S. B. Chin, J. J. Foo, Y. L. Lai and T. K. K. Yong, “Forced convective heat transfer enhancement with perforated pin fins,” Heat Mass Transfer, vol. 49, no. 10, pp. 1447–1458, 2013. DOI: 10.1007/s00231-013-1186-z.
  • D. Sahel, L. Bellahcene, A. Yousfi and A. Subasi, “Numerical investigation and optimization of a heat sink having hemispherical pin fins,” Int. Commun. Heat Mass Transfer, vol. 122, pp. 105133, Mar 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105133.
  • Y. Yang and H. Peng, “Investigation of planted pin fins for heat transfer enhancement in plate fin heat sink,” Microelectron. Reliabil., vol. 49, no. 2, pp. 163–169, Feb 2009. DOI: 10.1016/j.microrel.2008.11.011.
  • A. Gönül, Ö. Ağra, Ö. Atayılmaz, H. Demir, M. K. Sevindir and İ. Teke, “Experimental and numerical investigation of air-side forced convection on wire-on-tube condensers,” Int. J. Thermal Sci., vol. 151, pp. 106241, 2020. DOI: 10.1016/j.ijthermalsci.2019.106241.
  • P. Narato, M. Wae-Hayee, N. Kaewchoothong and C. Nuntadusit, “Heat transfer enhancement and flow characteristics in a rectangular channel having inclined pin arrays mounted on the endwall surface,” Int. Commun. Heat Mass Transfer, vol. 122, pp. 105162, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105162.
  • Y. Rao, C. Wan and Y. Xu, “An experimental study of pressure loss and heat transfer in the pin fin-dimple channels with various dimple depths,” Int. J. Heat Mass Transfer, vol. 55, no. 23–24, pp. 6723–6733, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.06.081.
  • G. Liao, X. Wang, J. Li and F. Zhang, “A numerical comparison of thermal performance of in-line pin–fins in a wedge duct with three kinds of coolant,” Int. J. Heat Mass Transfer, vol. 77, pp. 1033–1042, Oct 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.06.010.
  • I. Celik and O. Karatekin, “Numerical experiments on application of richardson extrapolation with nonuniform grids,” J. Fluids Eng. Trans. ASME, vol. 119, no. 3, pp. 584–590, 1997. DOI: 10.1115/1.2819284.
  • I. B. Celik, U. Ghia, P. J. Roache, C. J. Freitas, H. Coleman and P. E. Raad, “Procedure for estimation and reporting of uncertainty due to discretization in CFD applications,” J. Fluids Eng. Trans. ASME, vol. 130, no. 7, pp. 0780011–0780014, 2008.
  • M. Ahmadian-Elmi, A. Mashayekhi, S. S. Nourazar and K. Vafai, “A comprehensive study on parametric optimization of the pin-fin heat sink to improve its thermal and hydraulic characteristics,” Int. J. Heat Mass Transfer, vol. 180, pp. 121797, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121797.
  • E. Ali, J. Park and H. Park, “Numerical investigation of enhanced heat transfer in a rectangular channel with winglets,” Heat Transfer Eng., vol. 42, no. 8, pp. 695–705, 2021. DOI: 10.1080/01457632.2020.1723845.
  • K. Kumar and P. Kumar, “Effect of groove depth on hydrothermal characteristics of the rectangular microchannel heat sink,” Int. J. Thermal Sci., vol. 161, pp. 106730, 2021. DOI: 10.1016/j.ijthermalsci.2020.106730.
  • S. K. Sarangi, D. P. Mishra, H. Ramachandran, N. Anand, V. Masih and L. S. Brar, “Analysis and optimization of the curved trapezoidal winglet geometry in a high-efficiency compact heat exchanger,” Int. J. Thermal Sci., vol. 164, pp. 106872, Jun 2021. DOI: 10.1016/j.ijthermalsci.2021.106872.
  • Z. Feng, Z. Hu, Y. Lan, Z. Huang and J. Zhang, “Effects of geometric parameters of circular pin-fins on fluid flow and heat transfer in an interrupted microchannel heat sink,” Int. J. Thermal Sci., vol. 165, pp. 106956, 2021. DOI: 10.1016/j.ijthermalsci.2021.106956.
  • M. Sadatomi, Y. Sato and S. Saruwatari, “Two-phase flow in vertical noncircular channels,” Int. J. Multiph. Flow, vol. 8, no. 6, pp. 641–655, 1982. DOI: 10.1016/0301-9322(82)90068-4.
  • M. S. Bhatti and R. К. Shah, “Turbulent and transition flow convective heat transfer in ducts,” in Handbook Of Single-Phase Convective Heat Transfer, S. Kakaç, R. K. Shah, and W. Aung, Eds. New York: John Wiley & Sons, Inc., 1987.
  • G. Manadili, “Replace Implicit Equations with Signomial Functions,” Chem. Eng., vol. 104, no. 8, pp. 129, 1997.
  • E. Romeo, C. Royo and A. Monzón, “Improved explicit equations for estimation of the friction factor in rough and smooth pipes,” Chem. Eng. J., vol. 86, no. 3, pp. 369–374, 2002. DOI: 10.1016/S1385-8947(01)00254-6.
  • J. R. Sonnad and C. T. Goudar, “Using a mathematically exact alternative to the colebrook – white equation,” J. Hydraul. Eng, vol. 132, no. 8, pp. 863–867, 2006. DOI: 10.1061/(ASCE)0733-9429(2006)132:8(863).
  • D. Taler, “Determining velocity and friction factor for turbulent flow in smooth tubes,” Int. J. Thermal Sci., vol. 105, pp. 109–122, 2016. DOI: 10.1016/j.ijthermalsci.2016.02.011.
  • V. Gnielinski, “New equations for heat and mass transfer in turbulent pipe and channel flow,” Int. Chem. Eng., vol. 16, no. 2, pp. 359–368, 1976.
  • H. Hausen, “Erweiterte gleichung für den wärmeübergang in rohren bei turbulenter strömung,” Wärme- und Stoffübertragung, vol. 7, no. 4, pp. 222–225, 1974. DOI: 10.1007/BF01445310.
  • V. Vdi e, VDI Heat Atlas, 2nd ed. Berlin, Germany: Springer, 2010.
  • W. Beitz and K.-H. Küttner, Dubbel, Taschenbuch Für Den Maschinenbau. Berlin, Germany: Springer-Verlag GmbH, 1983.
  • S. Kakaç, R. Oskay and H. Y. Zhang, “Correlations for forced convection in ducts,” in Two-Phase Flow Heat Exchangers, Dordrecht: Springer Netherlands, 1988, pp. 123–158.
  • S. Kakac, Y. Yener and A. Pramuanjaroenkij, Convective Heat Transfer. Boca Raton, FL: CRC Press, 2013.
  • D. Jo, O. S. Al-Yahia, R. M. Altamimi, J. Park and H. Chae, “Experimental investigation of convective heat transfer in a narrow rectangular channel for upward and downward flows,” Nucl. Eng. Technol., vol. 46, no. 2, pp. 195–206, Apr 2014. DOI: 10.5516/NET.02.2013.057.
  • A. Ghione, B. Noel, P. Vinai and C. Demazière, “Assessment of thermal-hydraulic correlations for narrow rectangular channels with high heat flux and coolant velocity,” Int. J. Heat Mass Transfer, vol. 99, pp. 344–356, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.03.099.
  • C. Wang, P. Gao, S. Tan, Z. Wang and C. Xu, “Experimental study of friction and heat transfer characteristics in narrow rectangular channel,” Nucl. Eng. Des., vol. 250, pp. 646–655, 2012. DOI: 10.1016/j.nucengdes.2012.06.029.
  • R. Brinkmann, S. Ramadhyani and F. P. Incropera, “Enhancement of convective heat transfer from small heat sources to liquid coolants using strip fins,” Exp. Heat Transfer, vol. 1, no. 4, pp. 315–330, 1987. DOI: 10.1080/08916158708946349.
  • Y. Cengel and A. Ghajar, Heat and Mass Transfer: Fundamentals and Applications, 6th ed. New York, NY: McGraw-Hill Education, 2020.
  • A. D. Kraus, A. Aziz and J. Welty, Extended Surface Heat Transfer. Canada: John Wiley & Sons, Inc., 2001.
  • R. Webb and E. R. Eckert, “Application of rough surfaces to heat exchanger design,” Int. J. Heat Mass Transfer, vol. 15, no. 9, pp. 1647–1658, Sep 1972. DOI: 10.1016/0017-9310(72)90095-6.
  • P. Bhandari and Y. K. Prajapati, “Influences of tip clearance on flow and heat transfer characterstics of open type micro pin fin heat sink,” Int. J. Thermal Sci., vol. 179, pp. 107714, 2022. DOI: 10.1016/j.ijthermalsci.2022.107714.
  • S. T. Kadam, R. Kumar and R. Abiev, “Performance augmentation of single-phase heat transfer in open-type microchannel heat sink,” J. Thermophys. Heat Transfer, vol. 33, no. 2, pp. 416–424, 2019. DOI: 10.2514/1.T5522.
  • Y. K. Prajapati, “Influence of fin height on heat transfer and fluid flow characteristics of rectangular microchannel heat sink,” Int. J. Heat Mass Transfer, vol. 137, pp. 1041–1052, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.04.012.
  • S. Naik, S. D. Probert and M. J. Shilston, “Forced-convective steady-state heat transfers from shrouded vertical fin arrays, aligned parallel to an undisturbed air-stream,” Appl. Energy, vol. 26, no. 2, pp. 137–158, 1987. DOI: 10.1016/0306-2619(87)90015-8.
  • E. M. Sparrow and J. W. Ramsey, “Heat transfer and pressure drop for a staggered wall-attached array of cylinders with tip clearance,” Int. J. Heat Mass Transfer, vol. 21, no. 11, pp. 1369–1378, 1978. DOI: 10.1016/0017-9310(78)90200-4.
  • B. A. Jubran, M. A. Hamdan and R. M. Abdualh, “Enhanced heat transfer missing pin, and optimization for cylindrical pin fin arrays,” J. Heat Transfer, vol. 115, no. 3, pp. 576–583, 1993. DOI: 10.1115/1.2910727.
  • O. N. Sara, “Performance analysis of rectangular ducts with staggered square pin fins,” Fuel Energy Abstr., vol. 44, no. 6, pp. 409, Nov. 2003.
  • P. Bhandari and Y. K. Prajapati, “Fluid flow and heat transfer behavior in distinct array of stepped micro pin fin heat sink,” J Enhanc. Heat Transfer, vol. 28, no. 4, pp. 31–61, 2021. DOI: 10.1615/JEnhHeatTransf.2021037008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.