Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 4
152
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Motion characteristics and residence time of particles in the new cross structure under constant-pulse condition

, , , &
Pages 467-490 | Received 13 Dec 2022, Accepted 05 Apr 2023, Published online: 28 Apr 2023

References

  • Z. S. An et al., “Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes,” Proc. Natl. Acad. Sci. USA, vol. 116, no. 18, pp. 8657–8666, 2019. DOI: 10.1073/pnas.1900125116.
  • W. Phairuang, M. Inerb, M. Hata, and M. Furuuchi, “Characteristics of trace elements bound to ambient nanoparticles (PM0.1) and a health risk assessment in southern Thailand,” J. Hazard. Mater., vol. 425, pp. 127986, 2022. DOI: 10.1016/j.jhazmat.2021.127986.
  • T. Zhu et al., “Controlling fine particles in flue gas from lead-zinc smelting by plasma technology,” Plasma Sci. Technol., vol. 22, no. 4, pp. 044004, 2020. DOI: 10.1088/2058-6272/ab77d3.
  • C. Knoop and U. Fritsching, “Dynamic forces on agglomerated particles caused by high-intensity ultrasound,” Ultrasonics, vol. 54, no. 3, pp. 763–769, 2014. DOI: 10.1016/j.ultras.2013.09.022.
  • B. Hu et al., “Experimental study on particles agglomeration by chemical and turbulent agglomeration before electrostatic precipitators,” Powder Technol., vol. 335, pp. 186–194, 2018. DOI: 10.1016/j.powtec.2018.04.016.
  • F. F. Dizaji and J. S. Marshall, “On the significance of two-way coupling in simulation of turbulent particle agglomeration,” Powder Technol., vol. 318, pp. 83–94, 2017. DOI: 10.1016/j.powtec.2017.05.027.
  • J. Wang, J. Z. Liu, G. X. Zhang, J. H. Zhou, and K. F. Cen, “Orthogonal design process optimization and single factor analysis for bimodal acoustic agglomeration,” Powder Technol., vol. 210, no. 3, pp. 315–322, 2011. DOI: 10.1016/j.powtec.2011.04.002.
  • B. Hu et al., “Experimental and DFT studies of PM2.5 removal by chemical agglomeration,” Fuel, vol. 212, pp. 27–33, 2018. DOI: 10.1016/j.fuel.2017.09.121.
  • L. Zhou et al., “Investigation on the relationship of droplet atomization performance and fine particle abatement during the chemical agglomeration process,” Fuel, vol. 245, pp. 65–77, 2019. DOI: 10.1016/j.fuel.2019.02.033.
  • Z. K. Sun, L. J. Yang, H. Wu, and X. Wu, “Agglomeration and removal characteristics of fine particles from coal combustion under different turbulent flow fields,” J. Environ. Sci. (China), vol. 89, pp. 113–124, 2020. DOI: 10.1016/j.jes.2019.10.004.
  • Z. K. Sun, L. J. Yang, S. Chen, and X. Wu, “Promoting the removal of fine particles by turbulent agglomeration with the coupling of different-scale vortexes,” Powder Technol., vol. 367, pp. 399–410, 2020. DOI: 10.1016/j.powtec.2020.03.062.
  • X. Sun, J. Kim, and W. S. Kim, “Spherical agglomeration of nickel-manganese-cobalt hydroxide in turbulent Batchelor vortex flow,” Chem. Eng. J., vol. 421, pp. 129924, 2021. DOI: 10.1016/j.cej.2021.129924.
  • D. K. Thai, Q. P. Mayra, and W. S. Kim, “Agglomeration of Ni-rich hydroxide crystals in Taylor vortex flow,” Powder Technol., vol. 274, pp. 5–13, 2015. DOI: 10.1016/j.powtec.2015.01.008.
  • K. Luzzatto, A. Tamir, and I. Elperin, “A new 2-impinging-streams heterogeneous reactor,” AIChE J., vol. 30, no. 4, pp. 600–608, 1984. DOI: 10.1002/aic.690300411.
  • B. Yao, Y. Berman, and A. Tamir, “Evaporative cooling of air in impinging streams,” AIChE J., vol. 41, no. 7, pp. 1667–1675, 1995. DOI: 10.1002/aic.690410707.
  • M. Du, J. Gong, W. Chen, and Q. Wang, “Mathematical model based on DSMC method for particulate drying in a coaxial impinging stream dryer,” Dry. Technol., vol. 33, no. 6, pp. 646–658, 2015. DOI: 10.1080/07373937.2014.969841.
  • H. L. Fan, S. F. Zhou, G. S. Qi, and Y. Z. Liu, “Continuous preparation of Fe3O4 nanoparticles using impinging stream-rotating packed bed reactor and magnetic property thereof,” J. Alloys Compd., vol. 662, pp. 497–504, 2016. DOI: 10.1016/j.jallcom.2015.12.025.
  • C. J. Zhou, Y. J. Wang, L. Du, and H. B. Yao, “Preparation of highly dispersed SiO2 nanoparticles using continuous gas-based impinging streams,” Chem. Eng. J., vol. 327, pp. 734–742, 2017. DOI: 10.1016/j.cej.2017.06.133.
  • Y. Berman, A. Tanklevsky, Y. Oren, and A. Tamir, “Modeling and experimental studies of SO2 absorption in coaxial cylinders with impinging streams: part II,” Chem. Eng. Sci., vol. 55, no. 5, pp. 1023–1028, 2000. DOI: 10.1016/S0009-2509(99)00381-4.
  • Y. Berman, A. Tanklevsky, Y. Oren, and A. Tamir, “Modeling and experimental studies of SO2 absorption in coaxial cylinders with impinging streams: Part I,” Chem. Eng. Sci., vol. 55, no. 5, pp. 1009–1021, 2000. DOI: 10.1016/S0009-2509(99)00380-2.
  • Z. W. Liu, L. Guo, T. H. Huang, L. X. Wen, and J. F. Chen, “Experimental and CFD studies on the intensified micromixing performance of micro-impinging stream reactors built from commercial T-junctions,” Chem. Eng. Sci., vol. 119, pp. 124–133, 2014. DOI: 10.1016/j.ces.2014.07.061.
  • X. L. Huai, X. F. Peng, G. X. Wang, and D. Y. Liu, “Multi-phase flow and drying characteristics in a semi-circular impinging stream dryer,” Int. J. Heat Mass Transf., vol. 46, no. 16, pp. 3061–3067, 2003. DOI: 10.1016/S0017-9310(03)00051-6.
  • M. Sievers, E. S. Gaddis, and A. Vogelpohl, “Fluid-dynamics in an impinging-stream reactor,” Chem. Eng. Process.-Process Intensif., vol. 34, no. 2, pp. 115–119, 1995. DOI: 10.1016/0255-2701(94)03006-5.
  • M. Du, C. S. Zhao, B. Zhou, H. W. Guo, and Y. L. Hao, “A modified DSMC method for simulating gas-particle two-phase impinging streams,” Chem. Eng. Sci., vol. 66, no. 20, pp. 4922–4931, 2011. DOI: 10.1016/j.ces.2011.06.061.
  • S. Y. Wang et al., “Simulations of flow behavior of oscillatory opposed dilute gas-solid jets,” Powder Technol., vol. 284, pp. 595–603, 2015. DOI: 10.1016/j.powtec.2015.07.015.
  • X. Liu, Y. Chen, and Y. Chen, “Analysis of gas-particle flow characteristics in impinging streams,” Chem. Eng. Process.-Process Intensif., vol. 79, pp. 14–22, 2014. DOI: 10.1016/j.cep.2014.02.006.
  • S. Devahastin and A. S. Mujumdar, “A study of turbulent mixing of confined impinging streams using a new composite turbulence model,” Ind. Eng. Chem. Res., vol. 40, no. 22, pp. 4998–5004, 2001. DOI: 10.1021/ie010153a.
  • X. Liu, S. Yue, L. Lu, W. Gao, and J. Li, “Experimental and numerical studies on flow and turbulence characteristics of impinging stream reactors with dynamic inlet velocity variation,” Energies, vol. 11, no. 7, pp. 1717, 2018. DOI: 10.3390/en11071717.
  • Y. Wu, Y. X. Zhou, J. Guo, and J. Yuan, “Features of impinging streams intensifying processes and their applications,” Int. J. Chem. Eng., vol. 2010, pp. 1–16, 2010. DOI: 10.1155/2010/681501.
  • N. Ghasemi, M. Sohrabi, M. Khosravi, A. S. Mujumdar, and M. Goodarzi, “CFD simulation of solid-liquid flow in a two impinging streams cyclone reactor: Prediction of mean residence time and holdup of solid particles,” Chem. Eng. Process.-Process Intensif., vol. 49, no. 12, pp. 1277–1283, 2010. DOI: 10.1016/j.cep.2010.09.016.
  • L. Ji, B. Wu, K. Chen, and J. Zhu, “Experimental study and modeling of residence time distribution in impinging stream reactor with GDB model,” J. Ind. Eng. Chem., vol. 16, no. 4, pp. 646–650, 2010. DOI: 10.1016/j.jiec.2009.09.071.
  • S. Ghadi, K. Esmailpour, S. M. Hosseinalipour, and A. Mujumdar, “Experimental study of formation and development of coherent vortical structures in pulsed turbulent impinging jet,” Exp. Therm. Fluid Sci., vol. 74, pp. 382–389, 2016. DOI: 10.1016/j.expthermflusci.2015.12.007.
  • X. Q. Liu, S. Yue, L. Y. Lu, W. Gao, and J. L. Li, “Study of single-particle residence time in impulse, symmetric and asymmetric coaxial impinging streams,” Powder Technol., vol. 342, pp. 118–130, 2019. DOI: 10.1016/j.powtec.2018.09.087.
  • C. N. Wu, Y. Cheng, Y. L. Ding, and Y. Jin, “CFD-DEM simulation of gas-solid reacting flows in fluid catalytic cracking (FCC) process,” Chem. Eng. Sci., vol. 65, no. 1, pp. 542–549, 2010. DOI: 10.1016/j.ces.2009.06.026.
  • D. Y. Liu, C. S. Bu, and X. P. Chen, “Development and test of CFD-DEM model for complex geometry: A coupling algorithm for Fluent and DEM,” Comput. Chem. Eng., vol. 58, pp. 260–268, 2013. DOI: 10.1016/j.compchemeng.2013.07.006.
  • W. Q. Zhong, Y. Q. Xiong, Z. L. Yuan, and M. Y. Zhang, “DEM simulation of gas-solid flow behaviors in spout-fluid bed,” Chem. Eng. Sci., vol. 61, no. 5, pp. 1571–1584, 2006. DOI: 10.1016/j.ces.2005.09.015.
  • L. Djenidi, K. M. Talluru, and R. A. Antonia, “Can a turbulent boundary layer become independent of the Reynolds number?” J. Fluid Mech., vol. 851, pp. 1–22, 2018. DOI: 10.1017/jfm.2018.460.
  • J. A. Backar and L. Davidson, “Evaluation of numerical wall functions on the axisymmetric impinging jet using OpenFOAM,” Int. J. Heat Fluid Flow, vol. 67, pp. 27–42, 2017. DOI: 10.1016/j.ijheatfluidflow.2017.07.004.
  • E. Bijad, M. A. Delavar, and K. Sedighi, “CFD simulation of effects of dimension changes of buildings on pollution dispersion in the built environment,” Alex. Eng. J., vol. 55, no. 4, pp. 3135–3144, 2016. DOI: 10.1016/j.aej.2016.08.024.
  • M. S. Abhijith and K. Venkatasubbaiah, “Numerical investigation on heat transfer performance of a confined slot jet impingement with different MEPCM-water slurries using two-phase Eulerian-Eulerian model,” Therm. Sci. Eng. Prog., vol. 33, pp. 101315, 2022. DOI: 10.1016/j.tsep.2022.101315.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.