Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 9
240
Views
0
CrossRef citations to date
0
Altmetric
Articles

Flow and heat transfer of hydrocarbon fuel in the double-layer regenerative cooling channels

, , , , &
Pages 1433-1455 | Received 13 Dec 2022, Accepted 10 Apr 2023, Published online: 25 Apr 2023

References

  • E. T. Curran, “Scramjet engines: the first forty years,” J. Propul. Power, vol. 17, no. 6, pp. 1138–1148, May 2012. DOI: 10.2514/2.5875.
  • N. Gascoin, P. Gillard, A. Mangeot, and A. Navarro-Rodriguez, “Literature survey for a first choice of a fuel-oxidiser couple for hybrid propulsion based on kinetic justifications,” J. Anal. Appl. Pyrolysis, vol. 94, pp. 1–9, 2012. DOI: 10.1016/j.jaap.2011.11.006.
  • D. Zhang, S. Yang, S. Zhang, J. Qin, and W. Bao, “Thermodynamic analysis on optimum performance of scramjet engine at high Mach numbers,” Energy, vol. 90, pp. 1046–1054, 2015. DOI: 10.1016/j.energy.2015.08.017.
  • Q. Yang, K. Chetehouna, N. Gascoin, and W. Bao, “Experimental study on combustion modes and thrust performance of a staged-combustor of the scramjet with dual-strut,” Acta Astronaut., vol. 122, pp. 28–34, 2016. DOI: 10.1016/j.actaastro.2016.01.002.
  • Q. Yang, W. Bao, K. Chetehouna, S. Zhang, and N. Gascoin, “Thermal behavior of an isolator with mode transition inducing back-pressure of a dual-mode scramjet,” Chin. J. Aeronaut., vol. 30, no. 2, pp. 595–601, 2017. DOI: 10.1016/j.cja.2017.02.013.
  • D. Zhang et al., “Quasi-one-dimensional model of scramjet combustor coupled with regenerative cooling,” J. Propul. Power, vol. 32, no. 3, pp. 687–697, 2016. DOI: 10.2514/1.B35887.
  • L. Taddeo et al., “Dimensioning of automated regenerative cooling: Setting of high-end experiment,” Aerosp. Sci. Technol., vol. 43, pp. 350–359, 2015. DOI: 10.1016/j.ast.2015.03.015.
  • L. Taddeo et al., “Experimental study of pyrolysis–combustion coupling in a regeneratively cooled combustor: system dynamics analysis,” Aerosp. Sci. Technol., vol. 67, pp. 473–483, 2017. DOI: 10.1016/j.ast.2017.04.026.
  • Y. Feng et al., “Modeling and analysis of heat and mass transfers of supercritical hydrocarbon fuel with pyrolysis in mini-channel,” Int. J. Heat Mass Transf., vol. 91, pp. 520–531, Dec. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.07.095.
  • S. Liu et al., “Numerical simulation of supercritical catalytic steam reforming of aviation kerosene coupling with coking and heat transfer in mini-channel,” Int. J. Therm. Sci., vol. 137, pp. 199–214, 2019. DOI: 10.1016/j.ijthermalsci.2018.10.039.
  • Y. Zhu, B. Liu, and P. Jiang, “Experimental and numerical investigations on n-decane thermal cracking at supercritical pressures in a vertical tube,” Energy Fuels, vol. 28, no. 1, pp. 466–474, 2014. DOI: 10.1021/ef401924s.
  • K. Xu and H. Meng, “Modeling and simulation of supercritical-pressure turbulent heat transfer of aviation kerosene with detailed pyrolytic chemical reactions,” Energy Fuels, vol. 29, no. 7, pp. 4137–4149, 2015. DOI: 10.1021/acs.energyfuels.5b00097.
  • S. Dogan, S. Darici, and M. Ozgoren, “Numerical comparison of thermal and hydraulic performances for heat exchangers having circular and elliptic cross-section,” Int. J. Heat Mass Transf., vol. 145, p. 118731, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118731.
  • S. Unger, E. Krepper, M. Beyer, and U. Hampel, “Numerical optimization of a finned tube bundle heat exchanger arrangement for passive spent fuel pool cooling to ambient air,” Nucl. Eng. Des., vol. 361, p. 110549, 2020. DOI: 10.1016/j.nucengdes.2020.110549.
  • C. Wu, H. Li, and Q. Zhang, “Experiment-based visualization of characteristics of secondary flow phenomenon in horizontal heating tubes,” Int. J. Heat Mass Transf., vol. 149, p. 119249, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119249.
  • D. Parris and B. Landrum, “Effect of tube geometry on regenerative cooling performance,” presented at the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2005. DOI: 10.2514/6.2005-4301.
  • J. Wennerberg, H. Jung, R. Schuff, W. Anderson, and C. Merkle, “Study of simulated fuel flows in high aspect ratio cooling channels,” presented at the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2006. DOI: 10.2514/6.2006-4708.
  • O. Knab, A. Fröhlich, D. Wennerberg, and W. Haslinger, “Advanced cooling circuit layout for the VINCI expander cycle thrust chamber,” presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2002. DOI: 10.2514/6.2002-4005.
  • M. Pizzarelli, F. Nasuti, R. Paciorri, and M. Onofri, “Numerical analysis of three-dimensional flow of supercritical fluid in cooling channels,” AIAA J., vol. 47, no. 11, pp. 2534–2543, 2009. DOI: 10.2514/1.38542.
  • M. Pizzarelli, F. Nasuti, and M. Onofri, “CFD analysis of transcritical methane in rocket engine cooling channels,” J. Supercrit. Fluids, vol. 62, pp. 79–87, 2012. DOI: 10.1016/j.supflu.2011.10.014.
  • A. Ulas and E. Boysan, “Numerical analysis of regenerative cooling in liquid propellant rocket engines,” Aerosp. Sci. Technol., vol. 24, no. 1, pp. 187–197, 2013. DOI: 10.1016/j.ast.2011.11.006.
  • L. Wang, Z. Chen, and H. Meng, “Numerical study of conjugate heat transfer of cryogenic methane in rectangular engine cooling channels at supercritical pressures,” Appl. Therm. Eng., vol. 54, no. 1, pp. 237–246, 2013. DOI: 10.1016/j.applthermaleng.2013.02.007.
  • S. Zhang et al., “Thermal behavior in the cracking reaction zone of scramjet cooling channels at different channel aspect ratios,” Acta Astronaut., vol. 127, pp. 41–56, 2016. DOI: 10.1016/j.actaastro.2016.05.015.
  • S. Zhang, J. Qin, K. Xie, Y. Feng, and W. Bao, “Thermal behavior inside scramjet cooling channels at different channel aspect ratios,” J. Propul. Power, vol. 32, no. 1, pp. 57–70, 2016. DOI: 10.2514/1.B35563.
  • Y. Gao et al., “A numerical evaluation of the bifacial concentrated PV-STEG system cooled by mini-channel heat sink,” Renew. Energy, vol. 192, pp. 716–730, 2022. DOI: 10.1016/j.renene.2022.04.153.
  • X. Wang et al., “Thermal characteristics of refrigerant flow boiling in two mini-channel heat sinks of different aspect ratios for battery thermal management,” Appl. Therm. Eng., vol. 217, p. 119173, 2022. DOI: 10.1016/j.applthermaleng.2022.119173.
  • M. Gorzin, A. A. Ranjbar, and M. J. Hosseini, “Experimental and numerical investigation on thermal and hydraulic performance of novel serpentine minichannel heat sink for liquid CPU cooling,” Energy Rep., vol. 8, pp. 3375–3385, 2022. DOI: 10.1016/j.egyr.2022.02.179.
  • D. Deng, G. Pi, W. Zhang, P. Wang, and T. Fu, “Numerical study of double-layered microchannel heat sinks with different cross-sectional shapes,” Entropy, vol. 21, no. 1, pp. 16, Dec. 2018. DOI: 10.3390/e21010016.
  • A. S. El-Dean, O. Hassan, and H. M. Shafey, “Heat transfer characteristics of two-phase flow in a double-layer microchannel heat sink,” Int. Commun. Heat Mass Transf., vol. 132, p. 105899, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105899.
  • Y. Fu, Z. Tao, G. Xu, H. Deng, and Z. Jia, “Experimental study of flow distribution for aviation kerosene in parallel helical tubes under supercritical pressure,” Appl. Therm. Eng., vol. 90, pp. 102–109, 2015. DOI: 10.1016/j.applthermaleng.2015.06.082.
  • Y. Chen, Y. Wang, Z. Bao, Q. Zhang, and X.-Y. Li, “Numerical investigation of flow distribution and heat transfer of hydrocarbon fuel in regenerative cooling panel,” Appl. Therm. Eng., vol. 98, pp. 628–635, 2016. DOI: 10.1016/j.applthermaleng.2015.12.088.
  • J. Qin et al., “Flow rate distribution of cracked hydrocarbon fuel in parallel pipes,” Fuel, vol. 161, pp. 105–112, 2015. DOI: 10.1016/j.fuel.2015.08.015.
  • Y. Jiang et al., “A control method for flow rate distribution of cracked hydrocarbon fuel in parallel channels,” Appl. Therm. Eng., vol. 105, pp. 531–536, 2016. DOI: 10.1016/j.applthermaleng.2016.03.031.
  • Y. Jiang et al., “The influences of variable sectional area design on improving the hydrocarbon fuel flow distribution in parallel channels under supercritical pressure,” Fuel, vol. 233, pp. 442–453, 2018. DOI: 10.1016/j.fuel.2018.06.082.
  • Y. Jiang et al., “Parametric study on the distribution of flow rate and heat sink utilization in cooling channels of advanced aero-engines,” Energy, vol. 138, pp. 1056–1068, 2017. DOI: 10.1016/j.energy.2017.07.091.
  • Y. Jiang, J. Qin, K. Chetehouna, N. Gascoin, and W. Bao, “Parametric study on the hydrocarbon fuel flow rate distribution and cooling effect in non-uniformly heated parallel cooling channels,” Int. J. Heat Mass Transf., vol. 126, pp. 267–276, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.05.124.
  • T. A. Ward, J. S. Ervin, R. C. Striebich, and S. Zabarnick, “Simulations of flowing mildly-cracked normal alkanes incorporating proportional product distributions,” J. Propul. Power, vol. 20, no. 3, pp. 394–402, 2004. DOI: 10.2514/1.10380.
  • K. Xu and H. Meng, “Numerical study of fluid flows and heat transfer of aviation kerosene with consideration of fuel pyrolysis and surface coking at supercritical pressures,” Int. J. Heat Mass Transf., vol. 95, pp. 806–814, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.12.050.
  • Z. Tao, X. Hu, J. Zhu, and Z. Cheng, “Numerical study of flow and heat transfer of n-decane with pyrolysis and pyrolytic coking under supercritical pressures,” Energy Fuels, vol. 31, no. 8, pp. 8698–8707, 2017. DOI: 10.1021/acs.energyfuels.7b01083.
  • J. Q. Zhu, Z. Tao, H. W. Deng, K. Wang, and X. Yu, “Numerical investigation of heat transfer characteristics and flow resistance of kerosene RP-3 under supercritical pressure,” Int. J. Heat Mass Transf., vol. 91, pp. 330–341, Dec. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.07.118.
  • The Committee of China Aeronautical Materials Handbook, China Aeronautical Materials Handbook. Beijing: China Standard Press, 2002.
  • B. E. Poling, J. M. Prausnitz, and J. P. O'Connell, The Properties of Gases and Liquids, 5th ed. New York: McGraw-Hill Education, 2001.
  • W. Bao, S. Zhang, J. Qin, W. Zhou, and K. Xie, “Numerical analysis of flowing cracked hydrocarbon fuel inside cooling channels in view of thermal management,” Energy, vol. 67, pp. 149–161, 2014. DOI: 10.1016/j.energy.2014.01.044.
  • C. Zhang, Z. Yao, J. Qin, and W. Bao, “Experimental study on measurement and calculation of heat flux in supersonic combustor of scramjet,” J. Therm. Sci., vol. 24, no. 3, pp. 254–259, 2015. DOI: 10.1007/s11630-015-0781-3.
  • P.-X. Jiang, Y. Zhang, Y.-J. Xu, and R.-F. Shi, “Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical tube at low Reynolds numbers,” Int. J. Therm. Sci., vol. 47, no. 8, pp. 998–1011, 2008. DOI: 10.1016/j.ijthermalsci.2007.08.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.