Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 9
133
Views
3
CrossRef citations to date
0
Altmetric
Articles

Double-diffusive convective flow of hybrid nanofluid in an inverted T-shaped porous enclosure: A numerical study

, , &
Pages 1456-1480 | Received 15 Nov 2022, Accepted 05 Apr 2023, Published online: 06 Jul 2023

References

  • JS0312 Turner, “Double-diffusive phenomena,” Annu. Rev. Fluid Mech., vol. 6, pp. 37–56, 1974. DOI: 10.1146/annurev.fl.06.010174.000345.
  • H. E. Huppert and D. R. Moore, “Nonlinear double-diffusive convection,” J. Fluid Mech., vol. 78, no. 4, pp. 821–854, 1976. DOI: 10.1017/S0022112076002759.
  • H. E. Huppert and R. S. J. Sparks, “Double-diffusive convection due to crystallization in magmas,” Annu. Rev. Earth Planet. Sci., vol. 12, no. 1, pp. 11–37, 1984. DOI: 10.1146/annurev.ea.12.050184.000303.
  • G. R. Kefayati, “Thermosolutal natural convection of viscoplastic fluids in an open porous cavity,” Int. J. Heat Mass Transfer, vol. 138, pp. 401–419, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.04.059.
  • D. A. Nield and A. V. Kuznetsov, “The onset of double-diffusive convection in a nanofluid layer,” Int. J. Heat Fluid Flow, vol. 32, no. 4, pp. 771–776, 2011. DOI: 10.1016/j.ijheatfluidflow.2011.03.010.
  • S. Ostrach, “Fluid mechanics in crystal growth-the 1982 freeman scholar lecture,” ASME J. Fluids Eng., vol. 105, no. 1, pp. 5–20, 1983. DOI: 10.1115/1.3240942.
  • S. P. Tembhare, D. P. Barai, and B. A. Bhanvase, “Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: a comprehensive review,” Renew. Sustain. Energy Rev., vol. 153, pp. 111738, 2022. DOI: 10.1016/j.rser.2021.111738.
  • R. A. Mahdi, H. A. Mohammed, K. M. Munisamy, and N. H. Saeid, “Review of convection heat transfer and fluid flow in porous media with nanofluid,” Renew. Sustain. Energy Rev., vol. 41, pp. 715–734, 2015. DOI: 10.1016/j.rser.2014.08.040.
  • S. Abdolahzade, M. M. Heyhat, and M. Valizade, “Numerical study on the thermal behavior of porous media and nanofluid as volumetric absorbers in a parabolic trough solar collector,” J. Por. Media, vol. 25, no. 10, pp. 1–23, 2022. DOI: 10.1615/JPorMedia.2021038914.
  • Z. Haddad, H. F. Oztop, E. Abu-Nada, and A. Mataoui, “A review on natural convective heat transfer of nanofluids,” Renew. Sustain. Energy Rev., vol. 16, no. 7, pp. 5363–5378, 2012. DOI: 10.1016/j.rser.2012.04.003.
  • R. Mohebbi, S. A. M. Mehryan, M. Izadi, and O. Mahian, “Natural convection of hybrid nanofluids inside a partitioned porous cavity for application in solar power plants,” J. Therm. Anal. Calorim., vol. 137, no. 5, pp. 1719–1733, 2019. DOI: 10.1007/s10973-019-08019-9.
  • D. A. Nield and C. T. Simmons, “A brief introduction to convection in porous media,” Transp. Por. Med., vol. 130, no. 1, pp. 237–250, 2019. DOI: 10.1007/s11242-018-1163-6.
  • S. Mohamed, K. Gueraoui, M. Driouich, and S. Belhouideg, “The effect of al 2 o 3 nanoparticles sphericity on heat transfer by free convection in an annular metal-based porous space between vertical cylinders submitted to a discrete heat flux,” J. Por. Media, vol. 25, no. 2, pp. 59–74, 2022. DOI: 10.1615/JPorMedia.2021039505.
  • S. E. Ahmed, A. A. Arafa, S. A. Hussein, and Z. A. Raizah, “Novel treatments for the bioconvective radiative ellis nanofluids wedge flow with viscous dissipation and an activation energy,” Case Stud. Thermal Eng., vol. 40, pp. 102510, 2022. DOI: 10.1016/j.csite.2022.102510.
  • S. E. Ahmed, A. A. Arafa, and S. A. Hussein, “Mhd ellis nanofluids flow around rotating cone in the presence of motile oxytactic microorganisms,” Int. Commun. Heat Mass Transfer., vol. 134, pp. 106056, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106056.
  • S. E. Ahmed, A. A. Arafa, and S. A. Hussein, “Dissipated-radiative compressible flow of nanofluids over unsmoothed inclined surfaces with variable properties,” Numer. Heat Transfer A Appl., pp. 1–22, 2022. DOI: 10.1080/10407782.2022.2141389.
  • A. A. Arafa, Z. Z. Rashed, and S. E. Ahmed, “Radiative flow of non newtonian nanofluids within inclined porous enclosures with time fractional derivative,” Sci. Rep., vol. 11, no. 1, pp. 5338, 2021. DOI: 10.1038/s41598-021-84848-9.
  • S. E. Ahmed, A. A. Arafa, and S. A. Hussein, “Arrhenius activated energy impacts on irreversibility optimization due to unsteady stagnation point flow of radiative casson nanofluids,” Eur. Phys. J. Plus, vol. 137, no. 11, pp. 1–14, 2022. DOI: 10.1140/epjp/s13360-022-03434-8.
  • M. Hemmat Esfe, M. Bahiraei, H. Hajbarati, and M. Valadkhani, “A comprehensive review on convective heat transfer of nanofluids in porous media: energy-related and thermohydraulic characteristics,” APPl. Thermal Eng., vol. 178, pp. 115487, 2020. DOI: 10.1016/j.applthermaleng.2020.115487.
  • A. J. Chamkha and H. Al-Naser, “Double-diffusive convection in an inclined porous enclosure with opposing temperature and concentration gradients,” Int. J. Therm. Sci., vol. 40, no. 3, pp. 227–244, 2001. DOI: 10.1016/S1290-0729(00)01213-8.
  • A. A. Mohamad, R. Bennacer, and J. Azaiez, “Double diffusion natural convection in a rectangular enclosure filled with binary fluid saturated porous media: the effect of lateral aspect ratio,” Phys. Fluids, vol. 16, no. 1, pp. 184–199, 2004. DOI: 10.1063/1.1630798.
  • S. Mondal and P. Sibanda, “Effects of buoyancy ratio on unsteady double-diffusive natural convection in a cavity filled with porous medium with non-uniform boundary conditions,” Int. J. Heat Mass Transfer, vol. 85, pp. 401–413, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.01.129.
  • M. S. Malashetty, D. Pal, and P. Kollur, “Double-diffusive convection in a darcy porous medium saturated with a couple-stress fluid,” Fluid Dyn. Res., vol. 42, no. 3, pp. 035502, 2010. DOI: 10.1088/0169-5983/42/3/035502.
  • C.-H. Wang, Z.-Y. Liu, Z. Jiang, and X.-X. Zhang, “Double-diffusive convection in a magnetic nanofluid-filled porous medium: development and application of a nonorthogonal lattice boltzmann model,” Phys. Fluids, vol. 34, no. 6, pp. 062012, 2022. DOI: 10.1063/5.0097330.
  • S. Kumar and K. M. Gangawane, “Double-diffusive convection in a rectangular cavity subjected to an external magnetic field with heated rectangular blockage insertion for liquid sodium–potassium alloy,” Phys. Fluids, vol. 34, no. 2, pp. 023604, 2022. DOI: 10.1063/5.0080434.
  • P. Bera, S. Pippal, and A. K. Sharma, “A thermal non-equilibrium approach on double-diffusive natural convection in a square porous-medium cavity,” Int. J. Heat Mass Transfer, vol. 78, pp. 1080–1094, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.041.
  • B. S. Bhadauria and A. Srivastava, “Combined effect of internal heating and through-flow in a nanofluid saturated porous medium under local thermal nonequilibrium,” J. Por. Media, vol. 25, no. 2, pp. 75–95, 2022. DOI: 10.1615/JPorMedia.2021036936.
  • M. Bourich, M. Hasnaoui, and A. Amahmid, “Double-diffusive natural convection in a porous enclosure partially heated from below and differentially salted,” Int. J. Heat Fluid Flow, vol. 25, no. 6, pp. 1034–1046, 2004. DOI: 10.1016/j.ijheatfluidflow.2004.01.003.
  • J. A. Esfahani and V. Bordbar, “Double diffusive natural convection heat transfer enhancement in a square enclosure using nanofluids,” J. Nanotechnol. Eng. Med., vol. 2, no. 2, pp. 9, 2011. DOI: 10.1115/1.4003794.
  • M. R. Habibi, and I. Zahmatkesh, “Double-diffusive natural and mixed convection of binary nanofluids in porous cavities,” J. Por. Media, vol. 23, no. 10, pp. 955–967, 2020. DOI: 10.1615/JPorMedia.2020027144.
  • K. Kamakura and H. Ozoe, “Double-diffusive natural convection in a rectangle with horizontal temperature and concentration gradient resulting in cooperating buoyancy forces near the vertical walls,” J. Mater. Process. Manuf. Sci., vol. 5, no. 3, pp. 183–196, 1997.
  • V. Kumar, S. Krishna Murthy, and B. R. Kumar, “Multi-force effect on fluid flow, heat and mass transfer, and entropy generation in a stratified fluid-saturated porous enclosure,” Math. Comput. Simul., vol. 203, pp. 328–367, 2023. DOI: 10.1016/j.matcom.2022.06.025.
  • T. R. Mahapatra, D. Pal, and S. Mondal, “Effects of buoyancy ratio on double-diffusive natural convection in a lid-driven cavity,” Int. J. Heat Mass Transfer, vol. 57, no. 2, pp. 771–785, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.10.028.
  • P. Nithiarasu, K. N. Seetharamu, and T. Sundararajan, “Double-diffusive natural convection in an enclosure filled with fluid-saturated porous medium: a generalized non-darcy approach,” Numer. Heat Transfer A Appl., vol. 30, no. 4, pp. 413–426, 1996. DOI: 10.1080/10407789608913848.
  • I. Sezai and A. A. Mohamad, “Double diffusive convection in a cubic enclosure with opposing temperature and concentration gradients,” Phys. Fluids, vol. 12, no. 9, pp. 2210–2223, 2000. DOI: 10.1063/1.1286422.
  • Q. Shao, M. Fahs, A. Younes, and A. Makradi, “A high-accurate solution for darcy-brinkman double-diffusive convection in saturated porous media,” Numer. Heat Transfer B Fundamentals, vol. 69, no. 1, pp. 26–47, 2016. DOI: 10.1080/10407790.2015.1081044.
  • H. Sun, G. Lauriat, D. L. Sun, and W. Q. Tao, “Transient double-diffusive convection in an enclosure with large density variations,” Int. J. Heat Mass Transfer, vol. 53, no. 4, pp. 615–625, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.10.035.
  • P. Mondal and T. R. Mahapatra, “Mhd double-diffusive mixed convection and entropy generation of nanofluid in a trapezoidal cavity,” Int. J. Mech. Sci., vol. 208, pp. 106665, 2021. DOI: 10.1016/j.ijmecsci.2021.106665.
  • V. A. F. Costa, “Double-diffusive natural convection in parallelogrammic enclosures,” Int. J. Heat Mass Transfer, vol. 47, no. 14–16, pp. 2913–2926, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.03.008.
  • M. M. Rahman, H. F. Öztop, A. Ahsan, M. A. Kalam, and Y. Varol, “Double-diffusive natural convection in a triangular solar collector,” Int. Commun. Heat Mass Transfer, vol. 39, no. 2, pp. 264–269, 2012. DOI: 10.1016/j.icheatmasstransfer.2011.11.008.
  • A. Fattahi, N. Hajialigol, M. Delpisheh, and N. Karimi, “Lattice-boltzmann numerical simulation of double-diffusive natural convection and entropy generation in an n-shaped partially heated storage tank,” Eng. Anal. Boundary Elements, vol. 146, pp. 105–118, 2023. DOI: 10.1016/j.enganabound.2022.10.007.
  • M. Hatami, J. Zhou, J. Geng, D. Song and D. Jing, “Optimization of a lid-driven t-shaped porous cavity to improve the nanofluids mixed convection heat transfer,” J. Mol. Liquids, vol. 231, pp. 620–631, 2017. DOI: 10.1016/j.molliq.2017.02.048.
  • S. Kumar, B. V. Rathish Kumar, S. Vssnvg, K. Murthy, and D. Parmar, “Thermo-fluidic convective flow study of hybrid nanofluid in an inverted t-shaped porous enclosure under uniformly acting magnetic field,” J. Por. Media, vol. 26, no. 8, pp. 75–91, 2023. DOI: 10.1615/JPorMedia.2023046807.
  • A. Rahimi, H. Bakhshi, A. Dehghan Saee, A. Kasaeipoor, and E. Hasani Malekshah, “Lattice boltzmann method for nanofluid flow and heat transfer in a curve-ended t-shaped heat exchanger,” HFF, vol. 29, no. 1, pp. 21–42, 2019. DOI: 10.1108/HFF-05-2018-0249.
  • M. H. Esfe, A. A. A. Arani, W.-M. Yan, and A. Aghaei, “Natural convection in t-shaped cavities filled with water-based suspensions of cooh-functionalized multi walled carbon nanotubes,” Int. J. Mech. Sci., vol. 121, pp. 21–32, 2017. DOI: 10.1016/j.ijmecsci.2016.12.011.
  • S. Hussain, T. Armaghani, and M. Jamal, “Magnetoconvection and entropy analysis in t-shaped porous enclosure using finite element method,” J. Thermophys. Heat Transfer, vol. 34, no. 1, pp. 203–214, 2020. DOI: 10.2514/1.T5821.
  • M. Izadi, H. F. Oztop, M. A. Sheremet, S. A. M. Mehryan, and N. Abu-Hamdeh, “Coupled FHD–MHD free convection of a hybrid nanoliquid in an inversed t-shaped enclosure occupied by partitioned porous media,” Numer. Heat Transfer A Appl., vol. 76, no. 6, pp. 479–498, 2019. DOI: 10.1080/10407782.2019.1637626.
  • M. Izadi, R. Mohebbi, D. Karimi, and M. A. Sheremet, “Numerical simulation of natural convection heat transfer inside an inverted t-shaped cavity filled by a mwcnt-fe3o4/water hybrid nanofluids using lbm,” Chem. Eng. Process. Process Intensif., vol. 125, pp. 56–66, 2018. DOI: 10.1016/j.cep.2018.01.004.
  • M. A. Almeshaal, K. Kalidasan, F. Askri, R. Velkennedy, A. S. Alsagri, and L. Kolsi, “Three-dimensional analysis on natural convection inside a t-shaped cavity with water-based cnt–aluminum oxide hybrid nanofluid,” J. Therm. Anal. Calorim., vol. 139, no. 3, pp. 2089–2098, 2020. DOI: 10.1007/s10973-019-08533-w.
  • M. D. Massoudi, M. B. Ben Hamida, M. A. Almeshaal, Y. A. Rothan, and K. Hajlaoui, “Numerical analysis of magneto-natural convection and thermal radiation of swcnt nanofluid inside t-inverted shaped corrugated cavity containing porous medium,” HFF, vol. 32, no. 3, pp. 1092–1114, 2022. DOI: 10.1108/HFF-02-2021-0095.
  • S. A. M. Mehryan, M. A. Sheremet, M. Soltani, and M. Izadi, “Natural convection of magnetic hybrid nanofluid inside a double-porous medium using two-equation energy model,” J. Mol. Liquids, vol. 277, pp. 959–970, 2019. DOI: 10.1016/j.molliq.2018.12.147.
  • F. Selimefendigil and H. F. Öztop, “Impact of a rotating cone on forced convection of ag–mgo/water hybrid nanofluid in a 3d multiple vented t-shaped cavity considering magnetic field effects,” J. Therm. Anal. Calorim., vol. 143, no. 2, pp. 1485–1501, 2021. DOI: 10.1007/s10973-020-09348-w.
  • K. Al-Farhany and A. Turan, “Numerical study of double diffusive natural convective heat and mass transfer in an inclined rectangular cavity filled with porous medium,” Int. Commun. Heat Mass Transfer, vol. 39, no. 2, pp. 174–181, 2012. DOI: 10.1016/j.icheatmasstransfer.2011.11.014.
  • D. Das, M. Roy, and T. Basak, “Studies on natural convection within enclosures of various (non-square) shapes—a review,” Int. J. Heat Mass Transfer, vol. 106, pp. 356–406, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.08.034.
  • C.-C. Cho, “Natural convection of cu-water nanofluid in enclosed cavity with porous effect and wavy surface based on energy-flux-vector visualization method,” Phys. Fluids, vol. 32, no. 10, pp. 103607, 2020. DOI: 10.1063/5.0024773.
  • N. Nithyadevi and R.-J. Yang, “Double diffusive natural convection in a partially heated enclosure with soret and dufour effects,” Int. J. Heat Fluid Flow, vol. 30, no. 5, pp. 902–910, 2009. DOI: 10.1016/j.ijheatfluidflow.2009.04.001.
  • T. J. Hughes, W. K. Liu, and A. Brooks, “Finite element analysis of incompressible viscous flows by the penalty function formulation,” J. Comput. Phys., vol. 30, no. 1, pp. 1–60, 1979. DOI: 10.1016/0021-9991(79)90086-X.
  • J. Narasimha Reddy, Introduction to the Finite Element Method. McGraw-Hill Education, 2019.
  • C. K. Batchelor and G. K. Batchelor, An Introduction to Fluid Dynamics. Cambridge, U.K.: Cambridge University Press, 2000.
  • L. S. Sundar, M. K. Singh, and A. C. Sousa, “Enhanced heat transfer and friction factor of mwcnt–fe3o4/water hybrid nanofluids,” Int. Commun. Heat Mass Transfer, vol. 52, pp. 73–83, 2014. DOI: 10.1016/j.icheatmasstransfer.2014.01.012.
  • P. Nithiarasu, K. N. Seetharamu, and T. Sundararajan, “Natural convective heat transfer in a fluid saturated variable porosity medium,” Int. J. Heat Mass Transfer, vol. 40, no. 16, pp. 3955–3967, 1997. DOI: 10.1016/S0017-9310(97)00008-2.
  • A. K. Singh, T. Basak, A. Nag, and S. Roy, “Heatlines and thermal management analysis for natural convection within inclined porous square cavities,” Int. J. Heat Mass Transfer, vol. 87, pp. 583–597, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.03.043.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.