Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 9
118
Views
1
CrossRef citations to date
0
Altmetric
Articles

A comparative analysis of hybrid nanofluid flow through an electrically conducting vertical microchannel using Yamada-Ota and Xue models

ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 1501-1516 | Received 03 Feb 2023, Accepted 14 Apr 2023, Published online: 22 May 2023

References

  • B. Buonomo and O. Manca, “Natural convection flow in a vertical micro-channel with heated at uniform heat flux,” Int. J. Therm. Sci., vol. 49, no. 8, pp. 1333–1344, 2010. DOI: 10.1016/j.ijthermalsci.2010.03.005.
  • M. Azimi and R. Riazi, “MHD copper-water nanofluid flow and heat transfer through convergent-divergent channel,” J. Mech. Sci. Technol., vol. 30, no. 10, pp. 4679–4686, 2016. DOI: 10.1007/s12206-016-0938-3.
  • B. Buonomo and O. Manca, “Transient natural convection flow in a vertical micro-channel with heated at uniform heat flux,” Int. J. Therm. Sci., vol. 56, pp. 35–47, 2012. DOI: 10.1016/j.ijthermalsci.2012.01.013.
  • A. Nasr, “Heat and mass transfer for liquid film condensation along a vertical channel covered with a thin porous layer,” Int. J. Therm. Sci., vol. 124, pp. 288–299, 2018. DOI: 10.1016/j.ijthermalsci.2017.10.016.
  • H. Li and P. Hrnjak, “A mechanistic model in annular flow in microchannel tube for predicting heat transfer coefficient and pressure gradient,” Int. J. Heat Mass Transf., vol. 203, pp. 123805, 2023. DOI: 10.1016/j.ijheatmasstransfer.2022.123805.
  • M. Bayareh, “An overview of non-Newtonian nanofluid flow in macro-and micro-channels using two-phase schemes,” Eng. Anal. Bound Elem., vol. 148, pp. 165–175, 2023. DOI: 10.1016/j.enganabound.2022.12.033.
  • Y. Zhang et al., “Experimental study on slip flow of nitrogen through microchannels at atmospheric pressure,” Microfluid Nanofluid, vol. 27, no. 2, pp. 1–10, 2023. DOI: 10.1007/s10404-022-02616-1.
  • A. Sharma and M. K. Khan, “Heat transfer and flow characteristics of varying curvature wavy microchannels,” Int. J. Therm. Sci., vol. 185, pp. 108096, 2023. DOI: 10.1016/j.ijthermalsci.2022.108096.
  • S. Suresh, K. P. Venkitaraj, P. Selvakumar, and M. Chandrasekar, “Effect of Al2O3–Cu/water hybrid nanofuid in heat transfer,” Exp. Therm. Fluid Sci., vol. 38, pp. 54–60, 2012. DOI: 10.1016/j.expthermflusci.2011.11.007.
  • S. Goudarzi, “Nanoparticles migration due to thermophoresis and Brownian motion and its impact on Ag − MgO/Water hybrid nanofluid natural convection,” Powder Technol., vol. 375, pp. 4963–503, 2020.
  • N. Abbas et al., “Models base study of inclined MHD of hybrid nanofluid flow over nonlinear stretching cylinder,” Chinese J. Phys., vol. 69, pp. 109–117, 2021. DOI: 10.1016/j.cjph.2020.11.019.
  • H. Waqas et al., “Numerical and Computational simulation of blood flow on hybrid nanofluid with heat transfer through a stenotic artery: silver and gold nanoparticles,” Res. Phys., vol. 44, pp. 106152, 2023. DOI: 10.1016/j.rinp.2022.106152.
  • S. M. Upadhya, C. S. Raju, K. Vajravelu, and D. Guinovart-Sanjuán, “Analysis of micro-hybrid and Casson-hybrid nano-convective and radiative fluid flow in an inclined channel,” J. Nanofluids, vol. 12, no. 1, pp. 104–114, 2023. DOI: 10.1166/jon.2023.1916.
  • G. Revathi et al., “Dynamics of Lorentz force and cross-diffusion effects on ethylene glycol based hybrid nanofluid flow amidst two parallel plates with variable electrical conductivity: a multiple linear regression analysis,” Case Stud. Therm. Eng., vol. 41, pp. 102603, 2023. DOI: 10.1016/j.csite.2022.102603.
  • X. Li et al., “Thermal performance of iron oxide and copper (Fe3O4, Cu) in hybrid nanofluid flow of Casson material with Hall current via complex wavy channel,” Mater. Sci. Eng., vol. 289, pp. 116250, 2023. DOI: 10.1016/j.mseb.2022.116250.
  • T. Anwar, Asifa, and P Kumam, “A fractal fractional model for thermal analysis of GO − NaAlg − Gr hybrid nanofluid flow in a channel considering shape effects,” Case Stud. Therm. Eng., vol. 31, pp. 101828, 2022. DOI: 10.1016/j.csite.2022.101828.
  • S. R. R. Reddy, C. S. K. Raju, S. R. Gunakala, H. T. Basha and S. J. Yook, “Bio-magnetic pulsatile CuO − Fe3O4 hybrid nanofluid flow in a vertical irregular channel in a suspension of body acceleration,” Int. Commun. Heat Mass, vol. 135, pp. 106151, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106151.
  • M. Ramzan, N. Shahmir, and H. A. S. Ghazwani, “Hybrid nanofluid flow comprising spherical shaped particles with Hall current and irreversibility analysis: an application of solar radiation,” Wave Random Complex, pp. 1–23, 2022. DOI: 10.1080/17455030.2022.2123571.
  • O. A. Alawi et al., “Effects of binary hybrid nanofluid on heat transfer and fluid flow in a triangular-corrugated channel: an experimental and numerical study,” Powder Technol., vol. 395, pp. 267–279, 2022. DOI: 10.1016/j.powtec.2021.09.046.
  • A. Dawar, Z. Shah, W. Khan, M. Idrees, and S. Islam, “Unsteady squeezing flow of magnetohydrodynamic carbon nanotube nanofluid in rotating channels with entropy generation and viscous dissipation,” Adv. Mech. Eng., vol. 11, no. 1, pp. 168781401882310, 2019. DOI: 10.1177/1687814018823100.
  • U. Khan, N. Ahmed, and S. T. Mohyud-Din, “Numerical investigation for three dimensional squeezing flow of nanofluid in a rotating channel with lower stretching wall suspended by carbon nanotubes,” Appl. Therm. Eng., vol. 113, pp. 1107–1117, 2017. DOI: 10.1016/j.applthermaleng.2016.11.104.
  • A. Kumar, R. Tripathi, R. Singh, and G. S. Seth, “Three-dimensional magnetohydrodynamic flow of micropolar CNT-based nanofluid through a horizontal rotating channel: OHAM analysis,” Indian J. Phys., vol. 94, no. 3, pp. 319–332, 2020. DOI: 10.1007/s12648-019-01460-4.
  • E. Tayari, L. Torkzadeh, D. Domiri Ganji, and K. Nouri, “Investigation of hybrid nanofluid SWCNT–MWCNT with the collocation method based on radial basis functions,” Eur. Phys. J. Plus, vol. 138, no. 1, pp. 1–11, 2023. DOI: 10.1140/epjp/s13360-022-03601-x.
  • A. S. Oke, E. O. Fatunmbi, I. L. Animasaun, and B. A. Juma, “Exploration of ternary-hybrid nanofluid experiencing Coriolis and Lorentz forces: case of three-dimensional flow of water conveying carbon nanotubes, graphene, and alumina nanoparticles,” Wave Random Complex, pp. 1–20, 2022. DOI: 10.1080/17455030.2022.2123114.
  • M. Yasir, A. Ahmed, and M. Khan, “Carbon nanotubes based fluid flow past a moving thin needle examine through dual solutions: stability analysis,” J. Energy Storage, vol. 48, pp. 103913, 2022. DOI: 10.1016/j.est.2021.103913.
  • Y. Wang et al., “Thermal outcomes for blood-based carbon nanotubes (SWCNT and MWCNTs) with Newtonian heating by using new Prabhakar fractional derivative simulations,” Case Stud. Therm. Eng., vol. 32, pp. 101904, 2022. DOI: 10.1016/j.csite.2022.101904.
  • J. Gao et al., “Effects of various temperature and pressure initial conditions to predict the thermal conductivity and phase alteration duration of water based carbon hybrid nanofluids via MD approach,” J. Mol. Liq., vol. 351, pp. 118654, 2022. DOI: 10.1016/j.molliq.2022.118654.
  • P. Yadav, S. M. Gupta, and S. K. Sharma, “A review on stabilization of carbon nanotube nanofluid,” J. Therm. Anal. Calorim., vol. 147, no. 12, pp. 6537–6561, 2022. DOI: 10.1007/s10973-021-10999-6.
  • O. Pourmehran, M. Rahimi-Gorji, and D. D. Ganji, “Heat transfer and flow analysis of nanofluid flow induced by a stretching sheet in the presence of an external magnetic field,” J. Taiwan Inst. Chem. E, vol. 65, pp. 162–171, 2016. DOI: 10.1016/j.jtice.2016.04.035.
  • T. Hayat, M. Rashid, M. I. Khan, and A. Alsaedi, “Melting heat transfer and induced magnetic field effects on flow of water based nanofluid over a rotating disk with variable thickness,” Res. Phys., vol. 9, pp. 1618–1630, 2018. DOI: 10.1016/j.rinp.2018.04.054.
  • S. Qayyum, T. Hayat, and A. Alsaedi, “Chemical reaction and heat generation/absorption aspects in MHD nonlinear convective flow of third grade nanofluid over a nonlinear stretching sheet with variable thickness,” Res. Phys., vol. 7, pp. 2752–2761, 2017. DOI: 10.1016/j.rinp.2017.07.043.
  • Y. M. Chu, S. Bashir, M. Ramzan, and M. Y. Malik, “Model‐based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects,” Math Method Appl. Sci., pp. 1–15, 2022. DOI:10.1002/mma.8234.
  • A. Hassan et al., “Heat and mass transport analysis of MHD rotating hybrid nanofluids conveying silver and molybdenum di-sulfide nano-particles under effect of linear and non-linear radiation,” Energies, vol. 15, no. 17, pp. 6269, 2022. DOI: 10.3390/en15176269.
  • M. V. Krishna and A. J. Chamkha, “Hall and ion slip impacts on Unsteady MHD Convective flow of Ag-TiO2/WEG hybrid nanofluid in a rotating frame,” CNANO, vol. 19, no. 1, pp. 15–32, 2023. DOI: 10.2174/1573413717666211018113823.
  • M. Ramzan et al., “Computational assesment of Carreau ternary hybrid nanofluid influenced by MHD flow for entropy generation,” J. Magn. Magn. Mater., vol. 567, pp. 170353, 2023. DOI: 10.1016/j.jmmm.2023.170353.
  • T. Barman, S. Roy, and A. J. Chamkha, “Entropy generation analysis of MHD hybrid nanofluid flow due to radiation with non-erratic slot-wise mass transfer over a rotating sphere,” Alex. Eng. J., vol. 67, pp. 271–286, 2023. DOI: 10.1016/j.aej.2022.12.051.
  • M. Atashafrooz, H. Sajjadi, and A. A. Delouei, “Simulation of combined convective-radiative heat transfer of hybrid nanofluid flow inside an open trapezoidal enclosure considering the magnetic force impacts,” J. Magn. Magn. Mater., vol. 567, pp. 170354, 2023. DOI: 10.1016/j.jmmm.2023.170354.
  • M. Bilal, M. Ramzan, I. Siddique, and A. Anum, “A numerical simulation of electrically conducting micro-channel nanofluid flow with thermal slip effects,” Wave Random Complex, pp. 1–25, 2022. DOI: 10.1080/17455030.2022.2111474.
  • M. F. Ahmed et al., “Numerical computation for gyrotactic microorganisms in MHD radiative Eyring–Powell nanomaterial flow by a static/moving wedge with Darcy–Forchheimer relation,” Micromachines, vol. 13, no. 10, pp. 1768, 2022. DOI: 10.3390/mi13101768.
  • B. Jha and B. Aina, “Interplay of non-conducting and conducting walls on magnetohydrodynamic (MHD) natural convection flow in vertical micro-channel in the presence of induced magnetic field,” Propul. Power Res., vol. 7, no. 4, pp. 296–307, 2018. DOI: 10.1016/j.jppr.2018.07.006.
  • S. Rosseland, Astrophysik Aud Atom-Theoretische Grundlagen, Berlin: Springer, 1931, pp. 41–44.
  • H. Upreti and A. Mishra, “The performance evolution of hybrid nanofluid flow over a rotating disk using Cattaneo–Christov double diffusion and Yamada–Ota model,” Waves Random Complex, pp. 1–21, 2022. DOI: 10.1080/17455030.2022.2147243.
  • X. Xiao et al., “Numerical investigation of helical baffles heat exchanger with different Prandtl number fluids,” Int. J. Heat Mass Transf., vol. 63, pp. 434–444, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.04.001.
  • M. Ramzan, H. Gul, M. Y. Malik, D. Baleanu, and K. S. Nisar, “On hybrid nanofluid Yamada-Ota and Xue flow models in a rotating channel with modified Fourier law,” Sci. Rep., vol. 11, no. 1, pp. 19590, 2021. DOI: 10.1038/s41598-021-98306-z.
  • A. Mishra and M. Kumar, “Numerical analysis of MHD nanofluid flow over a wedge, including effects of viscous dissipation and heat generation/absorption, using Buongiorno model,” Heat Transf., vol. 50, no. 8, pp. 8453–8474, 2021. DOI: 10.1002/htj.22284.
  • A. Mishra and M. Kumar, “Thermal performance of MHD nanofluid flow over a stretching sheet due to viscous dissipation, Joule heating and thermal radiation,” Int. J. Appl. Comput. Math., vol. 6, no. 4, pp. 123, 2020. DOI: 10.1007/s40819-020-00869-4.
  • A. Mishra and M. Kumar, “Velocity and thermal slip effects on MHD nanofluid flow past a stretching cylinder with viscous dissipation and Joule heating,” SN Appl. Sci., vol. 2, no. 8, pp. 1350, 2020. DOI: 10.1007/s42452-020-3156-7.
  • A. Rehman et al., “Influence of Marangoni convection, solar radiation, and viscous dissipation on the bioconvection couple stress flow of the hybrid nanofluid over a shrinking surface,” Front. Mater., vol. 9, pp. 964543, 2022, DOI: 10.3389/fmats.2022.964543.
  • A. Mishra and M. Kumar, “Viscous dissipation and Joule heating influences past a stretching sheet in a porous medium with thermal radiation saturated by silver–water and copper–water nanofluids,” Spec. Top. Rev. Porous Media, vol. 10, no. 2, pp. 171–186, 2019. DOI: 10.1615/SpecialTopicsRevPorousMedia.2018026706.
  • M. N. Khan et al., “Thermophysical features of Ellis hybrid nanofluid flow with surface-catalyzed reaction and irreversibility analysis subjected to porous cylindrical surface,” Front. Phys., vol. 10, pp. 795, 2022. DOI: 10.3389/fphy.2022.986501.
  • M. M. Alqarni et al., “Mathematical analysis of Casson fluid flow with energy and mass transfer under the influence of activation energy from a non-coaxially spinning disc,” Front. Energy Res., vol. 10, pp. 1–10, 2022. DOI: 10.3389/fenrg.2022.986284.
  • I. Haq et al., “Mixed convection nanofluid flow with heat source and chemical reaction over an inclined irregular surface,” ACS Omega, vol. 7, no. 34, pp. 30477–30485, 2022. DOI: 10.1021/acsomega.2c03919.
  • S. U. Mamatha et al., “Multi-linear regression of triple diffusive convectively heated boundary layer flow with suction and injection: lie group transformations,” Int. J. Mod. Phys. B, vol. 37, no. 01, pp. 2350007, 2023. DOI: 10.1142/S0217979223500078.
  • B. Shankar Goud, P. Pramod Kumar and B. S. Malga, “Induced magnetic field effect on MHD free convection flow in nonconducting and conducting vertical microchannel walls,” Heat Transf., vol. 51, no. 2, pp. 2201–2218, 2022. DOI: 10.1002/htj.22396.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.