Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 10
516
Views
4
CrossRef citations to date
0
Altmetric
Articles

Nonsimilar stagnation flow of Williamson fluid over an isothermal linearly stretched sheet

, &
Pages 1535-1551 | Received 09 Nov 2022, Accepted 05 Apr 2023, Published online: 08 May 2023

References

  • R. V. Williamson, “The flow of pseudoplastic materials,” Ind. Eng. Chem., vol. 21, no. 11, pp. 1108–1111, Nov. 1929. DOI: 10.1021/ie50239a035.
  • F. Yilmaz and M. Y. Gundogdu, “A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions,” Korea-Aust. Rheol. J., vol. 20, no. 4, pp. 197–211, Dec. 2008.
  • H. A. Barnes, J. F. Hutton, and K. Walters, “An introduction to rheology,” in Rheology Series, vol. 3. Elsevier, 1989.
  • S. Nadeem, S. T. Hussain, and C. Lee, “Flow of a Williamson fluid over a stretching sheet,” Braz. J. Chem. Eng., vol. 30, no. 3, pp. 619–625, Sept. 2013. DOI: 10.1590/S0104-66322013000300019.
  • I. Zehra, M. M. Yousaf, and S. Nadeem, “Numerical solutions of Williamson fluid with pressure dependent viscosity,” Res. Phys., vol. 5, no. 1, pp. 20–25, Jan. 2015. DOI: 10.1016/j.rinp.2014.12.002.
  • T. Salahuddin, M. Y. Malik, A. Hussain, S. Bilal, and M. Awais, “MHD flow of Cattanneo–Christov heat flux model for Williamson fluid over a stretching sheet with variable thickness: Using numerical approach,” J. Magn. Magn. Mater., vol. 401, pp. 991–997, Mar. 2016. DOI: 10.1016/j.jmmm.2015.11.022.
  • M. R. Krishnamurthy, B. C. Prasannakumara, B. J. Gireesha, and R. S. R. Gorla, “Effect of chemical reaction on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium,” Eng. Sci. Technol. Int. J., vol. 19, no. 1, pp. 53–61, Mar. 2016. DOI: 10.1016/j.jestch.2015.06.010.
  • A. Zaib, K. Bhattacharyya, M. Khalid, and S. Shafie, “Thermal radiation effect on a mixed convection flow and heat transfer of the Williamson fluid past an exponentially shrinking permeable sheet with a convective boundary condition,” J. Appl. Mech. Tech. Phys., vol. 58, no. 3, pp. 419–424, May 2017. DOI: 10.1134/S0021894417030063.
  • M. Bibi, M. Y. Malik, M. Tahir, and Khalil-Ur-Rehman, “Numerical study of unsteady Williamson fluid flow and heat transfer in the presence of MHD through a permeable stretching surface,” Eur. Phys. J. Plus, vol. 133, no. 4, pp. 1–15, Apr. 2018. DOI: 10.1140/epjp/i2018-11991-2.
  • Y. X. Li et al., “Heat and mass transfer in MHD Williamson nanofluid flow over an exponentially porous stretching surface,” Case Stud. Therm. Eng., vol. 26, no. 1, pp. 100975, Aug. 2021. DOI: 10.1016/j.csite.2021.100975.
  • K. Ahmed, L. B. McCash, T. Akbar, and S. Nadeem, “Effective similarity variables for the computations of MHD flow of Williamson nanofluid over a non-linear stretching surface,” Processes, vol. 10, no. 6, pp. 1119, Jun. 2022. DOI: 10.3390/pr10061119.
  • M. Khan and A. Shahzad, “On stagnation point flow of Sisko fluid over a stretching sheet,” Meccanica, vol. 48, no. 10, pp. 2391–2400, Dec. 2013. DOI: 10.1007/s11012-013-9755-2.
  • M. Y. Malik, A. Hussain, T. Salahuddin, and M. Awais, “Effects of viscous dissipation on MHD boundary layer flow of Sisko fluid over a stretching cylinder,” AIP Adv., vol. 6, no. 3, pp. 035009, Mar. 2016. DOI: 10.1063/1.4944347.
  • M. KhanHashim, “On Cattaneo–Christov heat flux model for Carreau fluid flow over a slendering sheet,” Res. Phys., vol. 7, no. 1, pp. 310–319, Jan. 2017. DOI: 10.1016/j.rinp.2016.12.031.
  • A. Pantokratoras, “A common error made in investigation of boundary layer flows,” Appl. Math. Model., vol. 33, no. 1, pp. 413–422, Jan. 2009. DOI: 10.1016/j.apm.2007.11.009.
  • A. Pantokratoras, “Four usual errors made in investigation of boundary layer flows,” Powder Technol., vol. 353, no. 15, pp. 505–508, Jul. 2019. DOI: 10.1016/j.powtec.2019.05.060.
  • A. Pantokratoras, “The nonsimilar laminar wall plume in a constant transverse magnetic field,” Int. J. Heat Mass Transf., vol. 52, no. 1516, pp. 3873–3878, Jul. 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.03.002.
  • A. Pantokratoras, “Non-similar Blasius and Sakiadis flow of a non-Newtonian Carreau fluid,” J. Taiwan Inst. Chem. Eng., vol. 56, no. 1, pp. 1–5, Nov. 2015. DOI: 10.1016/j.jtice.2015.03.021.
  • A. Pantokratoras, “Blasius and Sakiadis flow with suction and non-linear Rosseland thermal radiation,” Int. J. Thermofluids, vol. 10, no. 1, pp. 100067, May 2021. DOI: 10.1016/j.ijft.2021.100067.
  • B. S. Goud, P. P. Kumar, and B. S. Malga, “Effect of heat source on an unsteady MHD free convection flow of Casson fluid past a vertical oscillating plate in porous medium using finite element analysis,” Partial Differ. Equ. Appl. Math., vol. 2, pp. 100015, Dec. 2020. DOI: 10.1016/j.padiff.2020.100015.
  • P. P. Kumar, B. S. Goud, and B. S. Malga, “Finite element study of Soret number effects on MHD flow of Jeffrey fluid through a vertical permeable moving plate,” Partial Differ. Equ. Appl. Math., vol. 1, pp. 100005, Sept. 2020. DOI: 10.1016/j.padiff.2020.100005.
  • B. S. Goud and M. N. R. Shekar, “Finite element study of Soret and radiation effects on mass transfer flow through a highly porous medium with heat generation and chemical reaction,” Int. J. Comput. Appl. Math., vol. 12, no. 1, pp. 53–64, 2017.
  • B. S. Goud and M. N. R. Shekar, “Finite element solution of viscous dissipative effects on unsteady MHD flow past a parabolic started vertical plate with mass diffussion and variable temperature,” i-Manag. J. Math., vol. 7, no. 1, pp. 18–25, 2018.
  • R. J. Moreau, Magnetohydrodynamics, vol. 3. Kluwer Academic Publishers, 1990.
  • G. R. Rajput, B. P. Jadhav, V. S. Patil, and S. N. Salunkhe, “Effects of nonlinear thermal radiation over magnetized stagnation point flow of Williamson fluid in porous media driven by stretching sheet,” Heat Transf., vol. 50, no. 3, pp. 2543–2557, 2021. DOI: 10.1002/htj.21991.
  • M. Mustafa, T. Hayat, I. Pop, S. Asghar, and S. Obaidat, “Stagnation-point flow of a nanofluid towards a stretching sheet,” Int. J. Heat Mass Transf., vol. 54, no. 2526, pp. 5588–5594, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.07.021.
  • S. Larsson and V. Thomee, Partial Differential Equations with Numerical Methods, vol. 45. Berlin: Springer, 2008.
  • K. W. Morton and D. F. Mayers, Numerical Solution of Partial Differential Equations: An Introduction. Cambridge: Cambridge Univ. Press, 1995.
  • I. Shingareva and C. Lizarraga-Celaya, Solving Nonlinear Partial Differential Equations with Maple and Mathematica. Wien New York: Springer, 2011.
  • A. Pantokratoras, “A note on MHD Blasius flow,” Acta Mech., vol. 226, no. 4, pp. 1305–1308, Apr. 2015. DOI: 10.1007/s00707-014-1242-x.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow. New York, NY, USA: McGraw-Hill, 1980.
  • P. P. Humane, V. S. Patil, A. B. Patil, M. D. Shamshuddin, and G. R. Rajput, “Dynamics of multiple slip boundaries effect on MHD Casson-Williamson double-diffusive nanofluid flow past an inclined magnetic stretching sheet,” Proc. Inst. Mech. Eng. E: J. Process Mech. Eng., vol. 236, no. 5, pp. 1906–1926, 2022. DOI: 10.1177/09544089221078153.
  • T. Srinivasulu and B. S. Goud, “Effect of inclined magnetic field on flow, heat and mass transfer of Williamson nanofluid over a stretching sheet,” Case Stud. Therm. Eng., vol. 23, pp. 100819, 2021. DOI: 10.1016/j.csite.2020.100819.
  • S. G. Bejawada, Z. H. Khan, and M. Hamid, “Heat generation/absorption on MHD flow of a micropolar fluid over a heated stretching surface in the presence of the boundary parameter,” Heat Transf., vol. 50, no. 6, pp. 6129–6147, 2021. DOI: 10.1002/htj.22165.
  • G. B. Shankar and M. M. Nandeppanavar, “Ohmic heating and chemical reaction effect on MHD flow of micropolar fluid past a stretching surface,” Partial Differ. Equ. Appl. Math., vol. 4, pp. 100104, 2021. DOI: 10.1016/j.padiff.2021.100104.
  • P. P. Humane, V. S. Patil, M. D. Shamshuddin, G. R. Rajput, and A. B. Patil, “Role of bioconvection on the dynamics of chemically active Casson nanofluid flowing via an inclined porous stretching sheet with convective conditions,” Int. J. Model. Simul., pp. 1–20, Jan. 2023. DOI: 10.1080/02286203.2022.2164156.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.