Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 10
86
Views
7
CrossRef citations to date
0
Altmetric
Articles

Enhanced heat transmission in unsteady magneto-nanoliquid flow due to a nonlinear extending sheet with convective boundary conditions

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1569-1590 | Received 03 Jan 2023, Accepted 21 Apr 2023, Published online: 08 May 2023

References

  • S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” ASME, vol. 231, pp. 99–106, 1995.
  • H. Maleki, M. R. Safaei, H. Togun, and M. Dahari, “Heat transfer and fluid flow of pseudo-plastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation,” J. Therm. Anal. Calorim., vol. 135, no. 3, pp. 1643–1654, 2019. DOI: 10.1007/s10973-018-7559-2.
  • N. Abbas, M. Y. Malik, S. Nadeem, and I. M. Alarifi, “On extended version of Yamada–Ota and Xue models of hybrid nanofluid on moving needle,” Eur. Phys. J. Plus, vol. 135, no. 2, pp. 1–16, 2020. DOI: 10.1140/epjp/s13360-020-00185-2.
  • L. Ali et al., “The impact of nanoparticles due to applied magnetic dipole in micropolar fluid flow using the finite element method,” Symmetry (Basel), vol. 12, no. 4, pp. 520, 2020. DOI: 10.3390/sym12040520.
  • H. Dessie and D. Fissha, “MHD mixed convective flow of Maxwell nanofluid past a porous vertical stretching sheet in presence of chemical reaction,” Appl. Math. Int. J., vol. 15, no. 1, pp. 530–549, 2020.
  • F. Ahmad et al., “The improved thermal efficiency of Maxwell hybrid nanofluid comprising of graphene oxide plus silver/kerosene oil over stretching sheet,” Case Stud. Therm. Eng., vol. 27, no. June, pp. 101257, 2021. DOI: 10.1016/j.csite.2021.101257.
  • Y. Zhang, N. Shahmir, M. Ramzan, H. A. S. Ghazwani, and M. Y. Malik, “Comparative analysis of Maxwell and Xue models for a hybrid nanofluid film flow on an inclined moving substrate,” Case Stud. Therm. Eng., vol. 28, no. April, pp. 101598, 2021. DOI: 10.1016/j.csite.2021.101598.
  • S. Riasat, M. Ramzan, Y. L. Sun, M. Y. Malik, and R. Chinram, “Comparative analysis of Yamada-Ota and Xue models for hybrid nanofluid flow amid two concentric spinning disks with variable thermophysical characteristics,” Case Stud. Therm. Eng., vol. 26, no. March, pp. 101039, 2021. DOI: 10.1016/j.csite.2021.101039.
  • S. Sarkar and S. Das, “Magneto-thermo-bioconvection of a chemically sensitive cross nanofluid with an infusion of gyrotactic microorganisms over a lubricious cylindrical surface: Statistical analysis,” Int. J. Model. Simul., (Article in press), pp. 1–22, 2022. DOI: 10.1080/02286203.2022.2141221.
  • A. Ali, S. Sarkar, S. Das, and R. N. Jana, “A report on entropy generation and Arrhenius kinetics in magneto-bioconvective flow of Cross nanofluid over a cylinder with wall slip,” Int. J. Ambient Energy, (Article in press), pp. 1–16, 2022. DOI: 10.1080/01430750.2022.2031292.
  • M. Faisal, K. K. Asogwa, N. Alessa, and K. Loganathan, “Nonlinear radiative nanofluidic hydrothermal unsteady bidirectional transport with thermal/mass convection aspects,” Symmetry (Basel), vol. 14, no. 12, pp. 2609, 2022. DOI: 10.3390/sym14122609.
  • M. Faisal, F. Mabood, K. Kenneth Asogwa, and I. A. Badruddin, “Bidirectional radiative transport of magnetic Maxwell nanofluid mobilized by Arrhenius energy and prescribed thermal/concentration conditions: Significance of Ludwig-Soret and pedesis effects,” Ain Shams Eng. J., vol. 14, no. 4, pp. 101933, 2023. DOI: 10.1016/j.asej.2022.101933.
  • I. Ahmad et al., “Dynamics of nanoplatelets in mixed convective radiative flow of hybridized nanofluid mobilized by variable thermal conditions,” Math. Probl. Eng., vol. 2022, pp. 1–10, 2022. DOI: 10.1155/2022/4417418.
  • I. Ahmad et al., “Convective heat transport in bidirectional water driven hybrid nanofluid using blade shaped cadmium telluride and graphite nanoparticles under electromagnetohydrodynamics process,” J. Math., vol. 2022, pp. 1–14, 2022. DOI: 10.1155/2022/4471450.
  • I. Ahmad et al., “Prescribed thermal activity in the radiative bidirectional flow of magnetized hybrid nanofluid: Keller-Box approach,” J. Nanomater., vol. 2022, pp. 1–16, 2022. DOI: 10.1155/2022/5531041.
  • I. Ahmad et al., “Entropy analysis in bidirectional hybrid nanofluid containing nanospheres with variable thermal activity,” J. Nanomater., vol. 2022, pp. 1–15, 2022. DOI: 10.1155/2022/1915185.
  • I. Ahmad, M. Faisal, K. Loganathan, M. Z. Kiyani, and N. Namgyel, “Nonlinear mixed convective bidirectional dynamics of double stratified radiative oldroyd-B nanofluid flow with heat source/sink and higher-order chemical reaction,” Math. Probl. Eng., vol. 2022, pp. 1–16, 2022. DOI: 10.1155/2022/9732083.
  • I. Ahmad, M. Faisal, and T. Javed, “Significance of convective Nield’s conditions on radiative Casson nanomaterial flow over a bidirectional stretching surface with Arrhenius energy,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 7588–7599, 2022. DOI: 10.1080/01430750.2022.2073263.
  • J. Hartmann, “Hg-dynamics I: Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field K,” Dan. Vidensk. Selsk. Mat. Fys. Medd., vol. 15, no. 6, pp. 1–28, 1937.
  • G. P. Ashwinkumar, C. Sulochana, and S. P. Samrat, “Effect of the aligned magnetic field on the boundary layer analysis of magnetic-nanofluid over a semi-infinite vertical plate with ferrous nanoparticles,” MMMS, vol. 14, no. 3, pp. 497–515, 2018. DOI: 10.1108/MMMS-10-2017-0128.
  • S. Jain, M. Kumari, and A. Parmar, “Unsteady MHD chemically reacting mixed convection nano-fluids flow past an inclined pours stretching sheet with slip effect and variable thermal radiation and heat source,” Mater. Today Proc., vol. 5, no. 2, pp. 6297–6312, 2018. DOI: 10.1016/j.matpr.2017.12.239.
  • F. Mabood, S. M. Ibrahim, P. V. Kumar, and G. Lorenzini, “Effects of slip and radiation on convective MHD Casson nanofluid flow over a stretching sheet influenced by variable viscosity,” J. Eng. Thermophys., vol. 29, no. 2, pp. 303–315, 2020. DOI: 10.1134/S1810232820020125.
  • A. C. Venkata Ramudu, K. Anantha Kumar, V. Sugunamma, and N. Sandeep, “Heat and mass transfer in MHD Casson nanofluid flow past a stretching sheet with thermophoresis and Brownian motion,” Heat Transf., vol. 49, no. 8, pp. 5020–5037, 2020. DOI: 10.1002/htj.21865.
  • U. Yashkun, K. Zaimi, N. A. Abu Bakar, A. Ishak, and I. Pop, “MHD hybrid nanofluid flow over a permeable stretching/shrinking sheet with thermal radiation effect,” HFF., vol. 31, no. 3, pp. 1014–1031, 2021. DOI: 10.1108/HFF-02-2020-0083.
  • G. P. Ashwinkumar, S. P. Samrat, and N. Sandeep, “Convective heat transfer in MHD hybrid nanofluid flow over two different geometries,” Int. Commun. Heat Mass Transf., vol. 127, no. August, pp. 105563, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105563.
  • N. Sandeep, B. Ranjana, S. P. Samrat, and G. P. Ashwinkumar, “Impact of nonlinear radiation on magnetohydrodynamic flow of hybrid nanofluid with heat source effect,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., vol. 236, no. 4, pp. 1616–1627, 2022. DOI: 10.1177/09544089211070667.
  • S. Ghosh and S. Mukhopadhyay, “MHD mixed convection flow of a nanofluid past a stretching surface of variable thickness and vanishing nanoparticle flux,” Pramana – J. Phys., vol. 94, no. 1, 2020. DOI: 10.1007/s12043-020-1924-y.
  • A. Mishra and M. Kumar, “Thermal performance of MHD nanofluid flow over a stretching sheet due to viscous dissipation, joule heating and thermal radiation,” Int. J. Appl. Comput. Math., vol. 6, no. 4, 2020. DOI: 10.1007/s40819-020-00869-4.
  • B. C. Sakiadis, “Boundary-layer behaviour on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow,” AIChE J., vol. 7, no. 1, pp. 26–28, 1961. DOI: 10.1002/aic.690070108.
  • B. C. Sakiadis, “Boundary-layer behaviour on continuous solid surfaces: II. The boundary layer on a continuous flat surface,” AIChE J., vol. 7, no. 2, pp. 221–225, 1961. DOI: 10.1002/aic.690070211.
  • Y. S. Daniel, Z. A. Aziz, Z. Ismail, and F. Salah, “Impact of thermal radiation on electrical MHD flow of nanofluid over nonlinear stretching sheet with variable thickness,” Alex. Eng. J, vol. 57, no. 3, pp. 2187–2197, 2018. DOI: 10.1016/j.aej.2017.07.007.
  • R. V. M. S. S. Kiran Kumar and S. V. K. Varma, “MHD boundary layer flow of nanofluid through a porous medium over a stretching sheet with variable wall thickness: Using Cattaneo-Christov heat flux model,” J. Theor. Appl. Mech., vol. 48, no. 2, pp. 72–92, 2018. DOI: 10.2478/jtam-2018-0011.
  • K. Bhagya Lakshmi, K. Anantha Kumar, J. V. Ramana Reddy, and V. Sugunamma, “Influence of nonlinear radiation and cross diffusion on MHD flow of Casson and Walters-B nanofluids past a variable thickness sheet,” J. Nanofluids, vol. 8, no. 1, pp. 73–83, 2019. DOI: 10.1166/jon.2019.1564.
  • S. Das, A. Ali, and R. N. Jana, “Darcy–Forchheimer flow of a magneto-radiated couple stress fluid over an inclined exponentially stretching surface with Ohmic dissipation,” WJE, vol. 18, no. 2, pp. 345–360, 2021. DOI: 10.1108/WJE-07-2020-0258.
  • A. Ali, S. Sarkar, S. Das, and R. N. Jana, “Investigation of Cattaneo–Christov double diffusions theory in bioconvective slip flow of radiated magneto-cross-nanomaterial over stretching cylinder/plate with activation energy,” Int. J. Appl. Comput. Math., vol. 7, no. 5, pp. 208, 2021. DOI: 10.1007/s40819-021-01144-w.
  • M. Faisal, F. Mabood, and I. A. Badruddin, “On numerical analysis of hydromagnetic radiative Jeffery nanofluid flow by variable thickness surface with activation energy and unsteadiness aspects,” Waves Random Complex Media, (Article in press), pp. 1–19, 2022. DOI: 10.1080/17455030.2022.2075049.
  • S. Eswaramoorthi, K. Loganathan, M. Faisal, T. Botmart, and N. A. Shah, “Analytical and numerical investigation of Darcy-Forchheimer flow of a nonlinear-radiative non-Newtonian fluid over a Riga plate with entropy optimization,” Ain Shams Eng. J., vol. 14, no. 3, pp. 101887, 2023. DOI: 10.1016/j.asej.2022.101887.
  • M. Faisal, I. Ahmad, and T. Javed, “Thermal progression via bi-directional stretching surface for unsteady dynamics of magnetized elastico-viscous nanofluid subject to variable thermal conditions: A comprehensive analysis,” Waves Random Complex Media, (Article in press), pp. 1–25, 2022. DOI: 10.1080/17455030.2022.2160883.
  • S. Manjunatha, B. Ammani Kuttan, S. Jayanthi, A. Chamkha, and B. J. Gireesha, “Heat transfer enhancement in the boundary layer flow of hybrid nanofluids due to variable viscosity and natural convection,” Heliyon, vol. 5, no. 4, pp. e01469, 2019. DOI: 10.1016/j.heliyon.2019.e01469.
  • E. H. Aly and I. Pop, “MHD flow and heat transfer over a permeable stretching/shrinking sheet in a hybrid nanofluid with a convective boundary condition,” HFF, vol. 29, no. 9, pp. 3012–3038, 2019. DOI: 10.1108/HFF-12-2018-0794.
  • Z. Abdelmalek, I. Khan, M. Waleed Ahmed Khan, K. Ur Rehman, and E. S. M. Sherif, “Computational analysis of nano-fluid due to a non-linear variable thicked stretching sheet subjected to Joule heating and thermal radiation,” J. Mater. Res. Technol., vol. 9, no. 5, pp. 11035–11044, 2020. DOI: 10.1016/j.jmrt.2020.07.085.
  • D. Gopal et al., “Numerical analysis of higher order chemical reaction on electrically MHD nanofluid under influence of viscous dissipation,” Alex. Eng. J., vol. 60, no. 1, pp. 1861–1871, 2021. DOI: 10.1016/j.aej.2020.11.034.
  • N. A. Johan and S. Mansur, “Boundary layer flow of dusty nanofluid over stretching sheet with partial slip effects,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 87, no. 2, pp. 118–126, 2021. DOI: 10.37934/arfmts.87.2.118126.
  • T. Srinivasulu and B. S. Goud, “Effect of inclined magnetic field on flow, heat and mass transfer of Williamson nanofluid over a stretching sheet,” Case Stud. Therm. Eng., vol. 23, pp. 100819, 2021. DOI: 10.1016/j.csite.2020.100819.
  • A. M. Megahed, M. G. Reddy, and W. Abbas, “Modeling of MHD fluid flow over an unsteady stretching sheet with thermal radiation, variable fluid properties and heat flux,” Math. Comput. Simul., vol. 185, pp. 583–593, 2021. DOI: 10.1016/j.matcom.2021.01.011.
  • J. R. Reddy, V. Sugunamma, and N. Sandeep, “Thermophoresis and Brownian motion effects on unsteady MHD nanofluid flow over a slendering stretching surface with slip effects,” Alex. Eng. J., vol. 57, no. 4, pp. 2465–2473, 2018. DOI: 10.1016/j.aej.2017.02.014.
  • S. P. Anjali Devi and M. Prakash, “Slip flow effects over hydromagnetic forced convective flow over a slendering stretching sheet,” JAFM., vol. 9, no. 2, pp. 683–692, 2016. DOI: 10.18869/acadpub.jafm.68.225.24064.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.