Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 10
117
Views
4
CrossRef citations to date
0
Altmetric
Articles

A study on MHD flow of SWCNT-Al2O3/water hybrid nanofluid past a vertical permeable cone under the influence of thermal radiation and chemical reactions

ORCID Icon & ORCID Icon
Pages 1591-1611 | Received 16 Nov 2022, Accepted 21 Apr 2023, Published online: 03 May 2023

References

  • S. U. S. Choi and J. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” Argonne National Lab (United States), vol. 66, pp. 99–105, 1995.
  • S. Lee, S. U.-S. Choi, S. Li and J. A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” J. Heat Transfer, vol. 121, no. 2, pp. 280–289, 1999. DOI: 10.1115/1.2825978.
  • J. Buongiorno, “Convective transport in nanofluids,” J. Heat Transfer, vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • A. V. Kuznetsov and D. A. Nield, “Natural convective boundary-layer flow of a nanofluid past a vertical plate,” Int. J. Therm. Sci., vol. 49, no. 2, pp. 243–247, 2010. DOI: 10.1016/j.ijthermalsci.2009.07.015.
  • W. A. Khan and I. Pop, “Boundary-layer flow of a nanofluid past a stretching sheet,” Int. J. Heat Mass Transfer, vol. 53, no. 11–12, pp. 2477–2483, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.01.032.
  • O. D. Makinde and A. Aziz, “Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition,” Int. J. Therm. Scie., vol. 50, no. 7, pp. 1326–1332, 2011. DOI: 10.1016/j.ijthermalsci.2011.02.019.
  • W. A. Khan, M. Ali, M. Irfan, M. Khan, M. Shahzad and F. Sultan, “A rheological analysis of nanofluid subjected to melting heat transport characteristics,” Appl. Nanosci., vol. 10, no. 8, pp. 3161–3170, 2020. DOI: 10.1007/s13204-019-01067-5.
  • Z. Hussain and W. Azeem Khan, “Impact of thermal-solutal stratifications and activation energy aspects on time-dependent polymer nanoliquid,” in Waves in Random and Complex Media. London, UK: Taylor & Francis, 2022, pp. 1–11. DOI: 10.1080/17455030.2022.2128229.
  • M. Tabrez and W. Azeem Khan, “Exploring physical aspects of viscous dissipation and magnetic dipole for ferromagnetic polymer nanofluid flow,” in Waves Random Complex Media. London, UK: Taylor & Francis, 2022, pp. 1–20. DOI: 10.1080/17455030.2022.2135794.
  • S. Rao and P. N. Deka, “A numerical study on heat transfer for mhd flow of radiative casson nanofluid over a porous stretching sheet,” LAAR, vol. 53, no. 2, pp. 129–136, 2023. DOI: 10.52292/j.laar.2023.950.
  • N. Anjum, W. A. Khan, A. Hobiny, M. Azam, M. Waqas and M. Irfan, “Numerical analysis for thermal performance of modified Eyring Powell nanofluid flow subject to activation energy and bioconvection dynamic,” Case Stud. Therm. Eng., vol. 39, pp. 102427, 2022. DOI: 10.1016/j.csite.2022.102427.
  • S. Rao and P. Deka, “A numerical study on unsteady MHD Williamson nanofluid flow past a permeable moving cylinder in the presence of thermal radiation and chemical reaction,” Biointerface Res. Appl. Chem., vol. 13, no. 5, pp. 436, 2023. DOI: 10.33263/BRIAC135.436.
  • M. Waqas, W. A. Khan, A. A. Pasha, N. Islam and M. M. Rahman, “Dynamics of bioconvective Casson nanoliquid from a moving surface capturing gyrotactic microorganisms, magnetohydrodynamics and stratifications,” Therm. Sci. Eng. Prog., vol. 36, pp. 101492, 2022. DOI: 10.1016/j.tsep.2022.101492.
  • S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991. DOI: 10.1038/354056a0.
  • V. Prajapati, P. K. Sharma and A. Banik, “Carbon nanotubes and its applications,” Int. J. Pharm. Sci. Res., vol. 2, no. 5, pp. 1099–1107, 2011. DOI: 10.13040/ijpsr.0975-8232.
  • A. Khalid, I. Khan, A. Khan, S. Shafie and I. Tlili, “Case study of MHD blood flow in a porous medium with CNTS and thermal analysis,” Case Stud. Therm. Eng., vol. 12, pp. 374–380, 2018. DOI: 10.1016/j.csite.2018.04.004.
  • T. Hayat, A. Kiran, M. Imtiaz and A. Alsaedi, “Unsteady flow of carbon nanotubes with chemical reaction and Cattaneo-Christov heat flux model,” Results Phys., vol. 7, pp. 823–831, 2017. DOI: 10.1016/j.rinp.2017.01.031.
  • A. Alsagri, et al., “MHD thin film flow and thermal analysis of blood with CNTs nanofluid,” Coatings, vol. 9, no. 3, pp. 175, 2019. DOI: 10.3390/coatings9030175.
  • A. Khan, et al., “Darcy-Forchheimer flow of MHD CNTs nanofluid radiative thermal behaviour and convective non uniform heat source/sink in the rotating frame with microstructure and inertial characteristics,” AIP Adv., vol. 8, no. 12, pp. 125024, 2018. DOI: 10.1063/1.5066223.
  • V. Kumaresan, R. Velraj and S. K. Das, “Convective heat transfer characteristics of secondary refrigerant based CNT nanofluids in a tubular heat exchanger,” Int. J. Refrig., vol. 35, no. 8, pp. 2287–2296, 2012. DOI: 10.1016/j.ijrefrig.2012.08.009.
  • B. J. Mahanthesh, N. Gireesha, S. Shashikumar and S. A. Shehzad, “Marangoni convective MHD flow of SWCNT and MWCNT nanoliquids due to a disk with solar radiation and irregular heat source,” Phys. E: Low-Dimens. Syst. Nanostruct., vol. 94, pp. 25–30, 2017. DOI: 10.1016/j.physe.2017.07.011.
  • R. Hossain, A. K. Azad, M. Jahid Hasan and M. M. Rahman, “Thermophysical properties of kerosene oil-based CNT nanofluid on unsteady mixed convection with MHD and radiative heat flux,” Eng. Sci. Technolo. Int. J., vol. 35, pp. 101095, 2022. DOI: 10.1016/j.jestch.2022.101095.
  • A. Rehman, A. Saeed, Z. Salleh, R. Jan and P. Kumam, “Analytical investigation of the time-dependent stagnation point flow of a CNT nanofluid over a stretching surface,” Nanomaterials, vol. 12, no. 7, pp. 1108, 2022. DOI: 10.3390/nano12071108.
  • B. Maatki, “Heat transfer enhancement using CNT-water nanofluids and two stages of seawater supply in the triangular solar still,” Case Stud. Therm. Eng., vol. 30, pp. 101753, 2022. DOI: 10.1016/j.csite.2021.101753.
  • L. S. Sundar, K. V. Sharma, M. K. Singh and A. C. M. Sousa, “Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – A review,” Renew. Sustain. Energy Rev., vol. 68, pp. 185–198, 2017. DOI: 10.1016/j.rser.2016.09.108.
  • I. Waini, A. Ishak and I. Pop, “Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid,” Int. J. Heat Mass Transfer, vol. 136, pp. 288–297, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.02.101.
  • P. Sreedevi, P. Sudarsana Reddy and A. Chamkha, “Heat and mass transfer analysis of unsteady hybrid nanofluid flow over a stretching sheet with thermal radiation,” SN Appl. Sci., vol. 2, no. 7, pp. 1–16, 2020. DOI: 10.1007/s42452-020-3011-x.
  • U. Yashkun, K. Zaimi, N. A. Abu Bakar, A. Ishak and I. Pop, “MHD hybrid nanofluid flow over a permeable stretching/shrinking sheet with thermal radiation effect,” HFF, vol. 31, no. 3, pp. 1014–1031, 2021. DOI: 10.1108/HFF-02-2020-0083.
  • H. T. Alkasasbeh, “Numerical solution of heat transfer flow of Casson hybrid nanofluid over vertical stretching sheet with magnetic field Effect,” CFDL, vol. 14, no. 3, pp. 39–52, 2022. DOI: 10.37934/cfdl.14.3.3952.
  • M. Jawad, Z. Khan, E. Bonyah and R. Jan, “Analysis of hybrid nanofluid stagnation point flow over a stretching surface with melting heat transfer,” Math. Prob. Eng., vol. 2022, pp. 1–12, 2022. vol DOI: 10.1155/2022/9469164.
  • A. Rehman, Z. Salleh, A. A. A. Mousa, E. Bonyah and W. Khan, “Approximate analytical study of time-dependent MHD Casson hybrid nanofluid over a stretching sheet and considering thermal radiation,” Adv. Math. Phy., vol. 2022, pp. 1–11, 2022. vol DOI: 10.1155/2022/6271265.
  • W. Hu, F. Donat, S. A. Scott and J. S. Dennis, “The interaction between CuO and Al2O3 and the reactivity of copper aluminates below 1000 °C and their implication on the use of the Cu–Al–O system for oxygen storage and production,” RSC Adv., vol. 6, no. 114, pp. 113016–113024, 2016. DOI: 10.1039/C6RA22712K.
  • M. K. A. Mohamed, A. M. Ishak, I. Pop, N. F. Mohammad and S. K. Soid, “Free convection boundary layer flow from a vertical truncated cone in a hybrid nanofluid,” Mal. J. Fund. Appl. Sci., vol. 18, no. 2, pp. 257–270, 2022. DOI: 10.11113/mjfas.v18n2.2410.
  • A. Mishra, A. K. Pandey and M. Kumar, “Velocity, thermal and concentration slip effects on MHD silver–water nanofluid flow past a permeable cone with suction/injection and viscous-Ohmic dissipation,” Heat Trans Res., vol. 50, no. 14, pp. 1351–1367, 2019. DOI: 10.1615/HeatTransRes.2018020420.
  • O. P. Meena, P. Janapatla and D. Srinivasacharya, “Mixed convection fluid flow over a vertical cone saturated porous media with double dispersion and injection/suction effects,” Int. J. Appl. Comput. Math., vol. 7, no. 3, pp. 1–18, 2021. DOI: 10.1007/s40819-021-00990-y.
  • W. G. England and A. F. Emery, “Thermal radiation effects on the laminar free convection boundary layer of an absorbing gas,” J. Heat Transfer, vol. 91, no. 1, pp. 37–44, 1969. DOI: 10.1115/1.3580116.
  • R. Cortell, “Effects of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly stretching sheet,” Phys. Lett. A, vol. 372, no. 5, pp. 631–636, 2008. DOI: 10.1016/j.physleta.2007.08.005.
  • W. A. Khan, M. Waqas, W. Chammam, Z. Asghar, U. A. Nisar and S. Z. Abbas, “Evaluating the characteristics of magnetic dipole for shear-thinning Williamson nanofluid with thermal radiation,” Comput. Methods Prog. Biomed., vol. 191, pp. 105396, 2020. DOI: 10.1016/j.cmpb.2020.105396.
  • M. A. Kumar, Y. D. Reddy, V. S. Rao and B. S. Goud, “Thermal radiation impact on MHD heat transfer natural convective nano fluid flow over an impulsively started vertical plate,” Case Stud. Therm. Eng., vol. 24, pp. 100826, 2021. DOI: 10.1016/j.csite.2020.100826.
  • A. Ali, T. Kanwal, M. Awais, Z. Shah, P. Kumam and P. Thounthong, “Impact of thermal radiation and non-uniform heat flux on MHD hybrid nanofluid along a stretching cylinder,” Sci. Rep., vol. 11, no. 1, pp. 1–15, 2021. DOI: 10.1038/s41598-021-99800-0.
  • W. A. Khan, N. Anjum, M. Waqas, S. Z. Abbas, M. Irfan and T. Muhammad, “Impact of stratification phenomena on a nonlinear radiative flow of sutterby nanofluid,” J. Mater. Res. Technol., vol. 15, pp. 306–314, 2021. DOI: 10.1016/j.jmrt.2021.08.011.
  • Y. P. Lv, N. Shaheen, M. Ramzan, M. Mursaleen, K. S. Nisar and M. Y. Malik, “Chemical reaction and thermal radiation impact on a nanofluid flow in a rotating channel with Hall current,” Sci. Rep., vol. 11, no. 1, pp. 1–17, 2021. DOI: 10.1038/s41598-021-99214-y.
  • W. A. Khan, Z. Arshad, A. Hobiny, S. Saleem, A. Al-Zubaidi and M. Irfan, “Impact of magnetized radiative flow of sutterby nanofluid subjected to convectively heated wedge,” Int. J. Mod. Phys. B, vol. 36, no. 16, pp. 1–22, 2022. DOI: 10.1142/S0217979222500795.
  • M. A. Abdelhafez, A. A. Awad, M. A. Nafe and D. A. Eisa, “Effects of yield stress and chemical reaction on magnetic two-phase nanofluid flow in a porous regime with thermal ray,” Indian J. Phys., vol. 96, no. 12, pp. 3579–3589, 2022. DOI: 10.1007/s12648-022-02288-1.
  • S. Rao and P. Deka, “A numerical solution using EFDM for unsteady MHD radiative Casson nanofluid flow over a porous stretching sheet with stability analysis,” Heat Trans, vol. 51, no. 8, pp. 8020–8042, 2022. DOI: 10.1002/htj.22679.
  • W. A. Khan, et al., “Impact of nanoparticles and radiation phenomenon on viscoelastic fluid,” Int. J. Mod. Phys. B, vol. 36, no. 05, pp. 1–17, 2022. DOI: 10.1142/S0217979222500497.
  • S. Rao and P. N. Deka, “A numerical investigation on transport phenomena in a nanofluid under the transverse magnetic field over a stretching plate associated with solar radiation,” Nonlinear Dyn. Appl., vol. 1, pp. 473–492, 2022. DOI: 10.1007/978-3-030-99792-2_39.
  • Q. M. Brewster, Thermal radiative transfer and properties, solutions manual, 1st ed. New York: Wiley-Interscience, 1992.
  • E. M. Sparrow and R. D. Cess, Radiation heat transfer, augmented edition, 1st ed. Boca Raton, FL: CRC Press Inc, 1978, DOI: 10.1201/9780203741382.
  • A. Raptis, “Radiation and free convection flow through a porous medium,” Int. Commun. Heat Mass Transfer, vol. 25, no. 2, pp. 289–295, 1998. DOI: 10.1016/S0735-1933(98)00016-5.
  • T. Cebeci and P. Bradshaw, “Physical and computational aspects of convective heat transfer,” in Physical Computational Aspects Convective Heat Transfer. New York: Springer-Verlag, 1988. DOI: 10.1007/978-1-4612-3918-5.
  • M. I. Anwar, S. Shafie, T. Hayat, S. A. Shehzad and M. Z. Salleh, “Numerical study for MHD stagnation-point flow of a micropolar nanofluid towards a stretching sheet,” J Braz. Soc. Mech. Sci. Eng., vol. 39, no. 1, pp. 89–100, 2017. DOI: 10.1007/s40430-016-0610-y.
  • A. S. Butt, A. Ali and A. Mehmood, “Numerical investigation of magnetic field effects on entropy generation in viscous flow over a stretching cylinder embedded in a porous medium,” Energy, vol. 99, pp. 237–249, 2016. DOI: 10.1016/j.energy.2016.01.067.
  • L. J. Grubka and K. M. Bobba, “Heat transfer characteristics of a continuous, stretching surface with variable temperature,” J. Heat Transfer, vol. 107, no. 1, pp. 248–250, 1985. DOI: 10.1115/1.3247387.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.