Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 10
130
Views
2
CrossRef citations to date
0
Altmetric
Articles

The optimum computational simulation of MHD natural convection for improved cooling efficiency and entropy performance inside Ϻ-shaped cabinet

ORCID Icon & ORCID Icon
Pages 1633-1652 | Received 27 Feb 2023, Accepted 25 Apr 2023, Published online: 09 May 2023

References

  • W. H. Khalil, I. D. J. Azzawi and A. Al-Damook, “The optimisation of MHD free convection inside porous trapezoidal cavity with the wavy bottom wall using response surface method,” Int. Commun. Heat Mass Transfer, vol. 134, pp. 106035, May 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106035.
  • A. Al-Damook and I. D. J. Azzawi, “Optimal hydro-thermal characteristics of a porous annular elliptic pipe using response surface method,” Int. Commun. Heat Mass Transfer, vol. 128, no. 1, pp. 105632, Nov 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105632.
  • I. D. J. Azzawi and A. Al-Damook, “Multi-objective optimum design of porous triangular chamber using RSM,” Int. Commun. Heat Mass Transfer, vol. 130, pp. 105774, Jan 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105774.
  • A. Al-Damook and I. D. J. Azzawi, “The Thermohydraulic Characteristics and Optimization Study of Radial Porous Heat Sinks Using Multi-Objective Computational Method,” J. Heat Transfer, vol. 143, no. 8, pp. 1–12, Jun 2021. DOI: 10.1115/1.4051126.
  • K. Khanafer, K. Vafai and M. Lightstone, “Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids,” Int. J. Heat Mass Transfer, vol. 46, no. 19, pp. 3639–3653, Sep 2003. DOI: 10.1016/S0017-9310(03)00156-X.
  • A. Al-Damook, M. A. Alfellag and W. H. Khalil, “Three-dimensional computational comparison of mini pinned heat sinks using different nanofluids: part one-the hydraulic-thermal characteristics,” Heat Trans. Asian Res, vol. 49, no. 1, pp. 591–613, Nov 2020. DOI: 10.1002/htj.21628.
  • A. Faraj, I. D. J. Azzawi, S. G. Yahya and A. Al-Damook, “Computational Fluid Dynamics Investigation of Pitch Variations on Helically Coiled Pipe in Laminar Flow Region,” J. Heat Transfer, vol. 142, no. 10, p.104503 (5 pages), Jun 2020. DOI: 10.1115/1.4047646.
  • A. Al-Damook and I. D. J. Azzawi, “Multi-objective numerical optimum design of natural convection in different configurations of concentric horizontal annular pipes using different nanofluids,” Heat Mass Transfer, vol. 57, no. 9, pp. 1543–1557, Mar 2021. DOI: 10.1007/s00231-021-03051-8.
  • M. A. Kumar, Y. D. Reddy, V. S. Rao and B. S. Goud, “Thermal radiation impact on MHD heat transfer natural convective nano fluid flow over an impulsively started vertical plate,” Case Stud. Thermal Eng., vol. 24, no. 2, pp. 100826, Apr 2021. DOI: 10.1016/j.csite.2020.100826.
  • Y. D. Reddy, F. Mebarek-Oudina, B. S. Goud and A. I. Ismail, “Radiation, Velocity and Thermal Slips Effect Toward MHD Boundary Layer Flow Through Heat and Mass Transport of Williamson Nanofluid with Porous Medium,” Arab J Sci Eng., vol. 47, no. 12, pp. 16355–16369, May 2022. DOI: 10.1007/s13369-022-06825-2.
  • Y. D. Reddy, V. S. Rao, D. Ramya and L. A. Babu, “MHD Boundary Layer Flow of Nanofluid and Heat Transfer Over a Nonlinear Stretching Sheet with Chemical Reaction and Suction/Blowing,” J. Nanofluids, vol. 7, no. 2, pp. 404–412, Apr 2018. DOI: 10.1166/jon.2018.1450.
  • B. Mliki, M. A. Abbassi, K. Guedri and A. Omri, “Lattice Boltzmann simulation of natural convection in an L-shaped enclosure in the presence of nanofluid,” Eng. Sci. Technol. Int. J. vol. 18, no. 3, pp. 503–511, Sep 2015. DOI: 10.1016/j.jestch.2015.04.008.
  • B. Mliki, M. A. Abbassi, A. Omri and B. Zeghmati, “Effects of nanoparticles Brownian motion in a linearly/sinusoidally heated cavity with MHD natural convection in the presence of uniform heat generation/absorption,” Powder Technol., vol. 295, no. 2, pp. 69–83, Jul 2016. DOI: 10.1016/j.powtec.2016.03.038.
  • B. Mliki, M. A. Abbassi, A. Omri and B. Zeghmati, “Augmentation of natural convective heat transfer in linearly heated cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption,” Powder Technol., vol. 284, no. 3, pp. 312–325, Nov 2015. DOI: 10.1016/j.powtec.2015.06.068.
  • B. Mliki and M. A. Abbassi, “Entropy generation of MHD natural convection heat transfer in a heated incinerator using hybrid-nanoliquid,” Propulsion Power Res., vol. 10, no. 2, pp. 143–154, Mar 2021. DOI: 10.1016/j.jppr.2021.01.002.
  • L. Wang, C. Huang, X. Yang, Z. Chai and B. Shi, “Effects of temperature-dependent properties on natural convection of power-law nanofluids in rectangular cavities with sinusoidal temperature distribution,” Int. J. Heat Mass Transfer, vol. 128, no. 5, pp. 688–699, Jan 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.09.007.
  • M. Hatami, “Numerical study of nanofluids natural convection in a rectangular cavity including heated fins,” J. Molecular Liquids, vol. 233, no. 20, pp. 1–8, May 2017. DOI: 10.1016/j.molliq.2017.02.112.
  • M. A. Mansour and M. A. Y. Bakier, “Free convection heat transfer in complex-wavy-wall enclosed cavity filled with nanofluid,” Int. Commun. Heat Mass Transfer, vol. 44, no. 5, pp. 108–115, May 2013. DOI: 10.1016/j.icheatmasstransfer.2013.02.015.
  • S. Morsli, A. Sabeur and M. El Ganaoui, “Influence of aspect ratio on the natural convection and entropy generation in rectangular cavities with wavy-wall,” Energy Procedia, vol. 139, no. 44, pp. 29–36, Dec 2017. DOI: 10.1016/j.egypro.2017.11.168.
  • M. A. Sheremet, I. Pop and A. Shenoy, “Unsteady free convection in a porous open wavy cavity filled with a nanofluid using Buongiorno’s mathematical model,” Int. Commun. Heat Mass Transfer, vol. 67, no. 33, pp. 66–72, Oct 2015. DOI: 10.1016/j.icheatmasstransfer.2015.07.007.
  • M. A. Sheremet, I. Pop and N. C. Roşca, “Magnetic field effect on the unsteady natural convection in a wavy-walled cavity filled with a nanofluid: buongiorno’s mathematical model,” J. Taiwan Inst. Chem. Eng., vol. 61, no. 125, pp. 211–222, Apr 2016. DOI: 10.1016/j.jtice.2015.12.015.
  • S. Moolya and S. Anbalgan, “Optimization of the effect of Prandtl number, inclination angle, magnetic field, and Richardson number on double-diffusive mixed convection flow in a rectangular domain,” Int. Commun. Heat Mass Transfer, vol. 126, no. 543, pp. 105358, Jul 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105358.
  • P. Barman and P. S. Rao, “Effect of aspect ratio on natural convection in a wavy porous cavity submitted to a partial heat source,” Int. Commun. Heat Mass Transfer, vol. 126, no. 1234, pp. 105453, Jul 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105453.
  • C.-C. Cho, “Effects of porous medium and wavy surface on heat transfer and entropy generation of Cu-water nanofluid natural convection in square cavity containing partially-heated surface,” Int. Commun. Heat Mass Transfer, vol. 119, no. 1212, pp. 104925, Dec 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104925.
  • Y. Varol and H. F. Oztop, “Free convection in a shallow wavy enclosure,” Int. Commun. Heat Mass Transfer, vol. 33, no. 6, pp. 764–771, Jul 2006. DOI: 10.1016/j.icheatmasstransfer.2006.02.004.
  • S. Parvin and N. F. Hossain, “Finite element simulation of MHD combined convection through a triangular wavy channel,” Int. Commun. Heat Mass Transfer, vol. 39, no. 6, pp. 811–817, Jul 2012. DOI: 10.1016/j.icheatmasstransfer.2012.04.007.
  • M. A. Kumar, Y. D. Reddy, B. S. Goud and V. S. Rao, “An impact on non-Newtonian free convective MHD Casson fluid flow past a vertical porous plate in the existence of Soret, Dufour, and chemical reaction,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 7410–7418, May 2022. DOI: 10.1080/01430750.2022.2063381.
  • K. K. Asogwa, B. S. Goud and Y. D. Reddy, “Non‐Newtonian electromagnetic fluid flow through a slanted parabolic started Riga surface with ramped energy,” Heat Trans, vol. 51, no. 6, pp. 5589–5606, Apr 2022. DOI: 10.1002/htj.22560.
  • B. Ahmed, F. Akbar, A. Ghaffari, S. Ullah Khan, M. I. Khan and Y. Dharmendar Reddy, “Soret and Dufour aspects of the third-grade fluid due to the stretching cylinder with the Keller box approach,” Waves Random Complex Media, vol. 2, no. 14, pp. 1–13, Jun 2022. DOI: 10.1080/17455030.2022.2085891.
  • Y. D. Reddy and B. S. Goud, “MHD heat and mass transfer stagnation point nanofluid flow along a stretching sheet influenced by thermal radiation,” J. Therm. Anal. Calorim., vol. 147, no. 21, pp. 11991–12003, Jun 2022. DOI: 10.1007/s10973-022-11430-4.
  • Y. Dharmendar Reddy, B. Shankar Goud, K. S. Nisar, B. Alshahrani, M. Mahmoud and C. Park, “Heat absorption/generation effect on MHD heat transfer fluid flow along a stretching cylinder with a porous medium,” Alexandria Eng. J., vol. 64, no. 11, pp. 659–666, Feb 2023. DOI: 10.1016/j.aej.2022.08.049.
  • B. S. Goud, Y. D. Reddy and K. K. Asogwa, “Inspection of chemical reaction and viscous dissipation on MHD convection flow over an infinite vertical plate entrenched in porous medium with Soret effect,” Biomass Conv. Bioref, vol. 11, no. 4, pp.1–12, Jun 2022. DOI: 10.1007/s13399-022-02886-3.
  • N. R. Nalivela, S. R. Vempati, B. Ravindra Reddy and Y. Dharmendar Reddy, “Viscous dissipation and thermal radiation impact on MHD mass transfer natural convective flow over a stretching sheet,” Proc. Institution Mech. Eng., Part E: J. Process Mech. Eng., vol. 2, no. 4, pp. 095440892210813, Mar 2022. DOI: 10.1177/09544089221081339.
  • B. S. Goud, Y. D. Reddy and K. K. Asogwa, “Chemical reaction, Soret and Dufour impacts on magnetohydrodynamic heat transfer Casson fluid over an exponentially permeable stretching surface with slip effects,” Int. J. Mod. Phys. B, vol. 37, no. 13, p. 2350124, Nov 2023. DOI: 10.1142/S0217979223501242.
  • Y. D. Reddy, B. S. Goud, A. J. Chamkha and M. A. Kumar, “Influence of radiation and viscous dissipation on MHD heat transfer Casson nanofluid flow along a nonlinear stretching surface with chemical reaction,” Heat Transfer, vol. 51, no. 4, pp. 3495–3511, Jan 2022. DOI: 10.1002/htj.22460.
  • D. R. Yanala, A. K. Mella, S. R. Vempati and B. S. Goud, “Influence of slip condition on transient laminar flow over an infinite vertical plate with ramped temperature in the presence of chemical reaction and thermal radiation,” Heat Transfer, vol. 50, no. 8, pp. 7654–7671, Jul 2021. DOI: 10.1002/htj.22247.
  • M. Veera Krishna, N. Ameer Ahamad and A. J. Chamkha, “Hall and ion slip impacts on unsteady MHD convective rotating flow of heat generating/absorbing second grade fluid,” Alexandria Eng. J., vol. 60, no. 1, pp. 845–858, Feb 2021. DOI: 10.1016/j.aej.2020.10.013.
  • M. Veera Krishna, N. Ameer Ahamad and A. J. Chamkha, “Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponential accelerated plate,” Alexandria Eng. J., vol. 59, no. 2, pp. 565–577, Apr 2020. DOI: 10.1016/j.aej.2020.01.043.
  • M. VeeraKrishna, G. Subba Reddy and A. J. Chamkha, “Hall effects on unsteady MHD oscillatory free convective flow of second grade fluid through porous medium between two vertical plates,” Physics Fluids, vol. 30, no. 2, pp. 023106, Feb 2018. DOI: 10.1063/1.5010863.
  • M. V. Krishna and A. J. Chamkha, “Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium,” Int. Commun. Heat Mass Transfer, vol. 113, no. 2, pp. 104494, Apr 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104494.
  • M. Veera Krishna and A. J. Chamkha, “Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium,” Results Phys., vol. 15, no. 2, pp. 102652, Dec 2019. DOI: 10.1016/j.rinp.2019.102652.
  • A. J. Chamkha, “MHD-free convection from a vertical plate embedded in a thermally stratified porous medium with Hall effects,” APPl. Math. Model., vol. 21, no. 10, pp. 603–609, Oct 1997. DOI: 10.1016/S0307-904X(97)00084-X.
  • A. J. Chamkha, “Double-diffusive convection in a porous enclosure with cooperating temperature and concentration gradients and heat generation or absorption effects,” Numer. Heat Transfer Part A: Appl., vol. 41, no. 1, pp. 65–87, Jan 2002. DOI: 10.1080/104077802317221447.
  • K. M. Khanafer and A. J. Chamkha, “Hydromagnetic natural convection from an inclined porous square enclosure with heat generation,” Numer. Heat Transfer Part A: Appl., vol. 33, no. 8, pp. 891–910, Jun 1998. DOI: 10.1080/10407789808913972.
  • A. J. Chamkha and H. Al-Naser, “Double-diffusive convection in an inclined porous enclosure with opposing temperature and concentration gradients,” Int. J. Therm. Sci., vol. 40, no. 3, pp. 227–244, Mar 2001. DOI: 10.1016/S1290-0729(00)01213-8.
  • S. Izadi, T. Armaghani, R. Ghasemiasl, A. J. Chamkha and M. Molana, “A comprehensive review on mixed convection of nanofluids in various shapes of enclosures,” Powder Technol., vol. 343, no. 1, pp. 880–907, Feb 2019. DOI: 10.1016/j.powtec.2018.11.006.
  • M. Ghalambaz, S. A. M. Mehryan, E. Izadpanahi, A. J. Chamkha and D. Wen, “MHD natural convection of Cu–Al2O3 water hybrid nanofluids in a cavity equally divided into two parts by a vertical flexible partition membrane,” J. Therm. Anal. Calorim., vol. 138, no. 2, pp. 1723–1743, May 2019. DOI: 10.1007/s10973-019-08258-w.
  • A. S. Dogonchi, A. J. Chamkha and D. D. Ganji, “A numerical investigation of magneto-hydrodynamic natural convection of Cu–water nanofluid in a wavy cavity using CVFEM,” J. Therm. Anal. Calorim., vol. 135, no. 4, pp. 2599–2611, May 2018. DOI: 10.1007/s10973-018-7339-z.
  • A. Ben-Nakhi and A. J. Chamkha, “Effect of length and inclination of a thin fin on natural convection in a square enclosure,” Numer. Heat Transfer Part A: Appl., vol. 50, no. 4, pp. 381–399, May 2006. DOI: 10.1080/10407780600619907.
  • M. Ghalambaz, E. Jamesahar, M. A. Ismael and A. J. Chamkha, “Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity,” Int. J. Therm. Sci., vol. 111, no. 2, pp. 256–273, Jan 2017. DOI: 10.1016/j.ijthermalsci.2016.09.001.
  • A. J. Chamkha and H. Al-Naser, “Hydromagnetic double-diffusive convection in a rectangular enclosure with opposing temperature and concentration gradients,” Int. J. Heat Mass Transfer, vol. 45, no. 12, pp. 2465–2483, Jun 2002. DOI: 10.1016/S0017-9310(01)00344-1.
  • I. D. J. Azzawi, W. H. Khalil and A. Al-Damook, “Multiobjective optimization of free convection through a nonuniform cabinet filled with porous media,” Heat Transfer, vol. 52, no. 4, pp. 3300–3316, Jan 2023. DOI: 10.1002/htj.22828.
  • O. A. Olayemi, M. Isiaka, K. Al-Farhany, M. A. Alomari, M. A. Ismael and S. O. Oyedepo, “Numerical Analysis of Natural Convection in a Concentric Trapezoidal Enclosure Filled with a Porous Medium,” JERA, vol. 61, pp. 129–150, Jul 2022. DOI: 10.4028/p-jza9vq.
  • M. Sheikholeslami, “Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method,” Comput. Methods Appl. Mech. Eng., vol. 344, no. 1232, pp. 306–318, Feb 2019. DOI: 10.1016/j.cma.2018.09.042.
  • O. Ghaffarpasand, “Numerical study of MHD natural convection inside a sinusoidally heated lid-driven cavity filled with Fe3O4-water nanofluid in the presence of Joule heating,” Appl. Math. Model., vol. 40, no. 21-22, pp. 9165–9182, Nov 2016. DOI: 10.1016/j.apm.2016.05.038.
  • M. A. Alomari, K. Al-Farhany, A. L. Hashem, M. F. Al-Dawody, F. Redouane and O. A. Olayemi, “Numerical Study of MHD Natural Convection in Trapezoidal Enclosure Filled With (50%MgO-50%Ag/Water) Hybrid Nanofluid: heated Sinusoidal from Below,” IJHT, vol. 39, no. 4, pp. 1271–1279, Aug 2021. DOI: 10.18280/ijht.390425.
  • A. Al-Damook and I. D. J. Azzawi, “Magnetohydrodynamic Natural Convection of Water in an L-Shaped Container Filled With an Aluminum Metal Foam,” J. Heat Transfer, vol. 145, no. 2, p.022601, 2022. DOI: 10.1115/1.4055942.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.