Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 10
138
Views
4
CrossRef citations to date
0
Altmetric
Articles

Bioconvective radiative unsteady Casson nanofluid flow across two concentric stretching cylinders with variable viscosity and variable thermal conductivity

ORCID Icon, , ORCID Icon, &
Pages 1653-1670 | Received 19 Jan 2023, Accepted 25 Apr 2023, Published online: 12 May 2023

References

  • T. G. Fang, J. Zhang, Y. F. Zhong, and H. Tao, “Unsteady viscous flow over an expanding stretching cylinder,” Chinese Phys. Lett., vol. 28, no. 12, pp. 124707, 2011. DOI: 10.1088/0256-307X/28/12/124707.
  • W. W. Zaimi, A. Ishak, and I. Pop, “Unsteady viscous flow over a shrinking cylinder,” J. King Saud Univ. Sci., vol. 25, no. 2, pp. 143–148, 2013. DOI: 10.1016/j.jksus.2012.11.005.
  • N. F. Dzulkifli et al., “Unsteady boundary layer flow over a Permeable stretching/shrinking cylinder immersed in nanofluid,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 85, no. 2, pp. 24–32, 2021. DOI: 10.37934/arfmts.85.2.2432.
  • R. A. Shah, H. Ullah, M. S. Khan, and A. Khan, “Parametric analysis of the heat transfer behavior of the nano-particle ionic-liquid flow between concentric cylinders,” Adv. Mech. Eng., vol. 13, no. 6, pp. 168781402110240, 2021. DOI: 10.1177/16878140211024009.
  • Shabnam, S. Mei, M. S. Khan, O. Mahmoud, and A. M. Galal, “Numerical investigation of a squeezing flow between concentric cylinders under the variable magnetic field of intensity,” Sci. Rep., vol. 12, no. 1, pp. 1–16, 2022. DOI: 10.1038/s41598-022-13050-2.
  • A. A. Hosseinjani and M. Nikfar, “Numerical analysis of unsteady natural convection from two heated cylinders inside a rhombus enclosure filled with Cu-water nanofluid,” Int. Commun. Heat Mass Transf., vol. 113, pp. 104510, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104510.
  • S. Gouran, S. Mohsenian, and S. E. Ghasemi, “Theoretical analysis on MHD nanofluid flow between two concentric cylinders using efficient computational techniques,” Alex. Eng. J., vol. 61, no. 4, pp. 3237–3248, 2022. DOI: 10.1016/j.aej.2021.08.047.
  • D. Kumar, K. Ramesh, and S. Chandok, “Mathematical modeling and simulation for the flow of magneto-Powell-Eyring fluid in an annulus with concentric rotating cylinders,” Chin. J. Phys., vol. 65, pp. 187–197, 2020. DOI: 10.1016/j.cjph.2020.02.002.
  • S. M. Venthan, I. J. Amalraj, and P. S. Kumar, “Analysis of entrance region flow of Bingham nanofluid in concentric annuli with rotating inner cylinder,” Micro Nano Lett., vol. 14, no. 13, pp. 1361–1365, 2019. DOI: 10.1049/mnl.2019.0437.
  • Y. Zhang, J. Jiang, and Y. Bai, “MHD flow and heat transfer analysis of fractional Oldroyd-B nanofluid between two coaxial cylinders,” Comput. Math. Appl., vol. 78, no. 10, pp. 3408–3421, 2019. DOI: 10.1016/j.camwa.2019.05.013.
  • A. V. Kuznetsov, “Bio-thermal convection induced by two different species of microorganisms,” Int. Commun. Heat Mass Transf., vol. 38, no. 5, pp. 548–553, 2011. DOI: 10.1016/j.icheatmasstransfer.2011.02.006.
  • A. J. Hillesdon, T. J. Pedley, and J. O. Kessler, “The development of concentration gradients in a suspension of chemotactic bacteria,” Bull. Math. Biol., vol. 57, no. 2, pp. 299–344, 1995. DOI: 10.1007/BF02460620.
  • L. Zhang et al., “Applications of bioconvection for tiny particles due to two concentric cylinders when role of Lorentz force is significant,” PLoS One, vol. 17, no. 5, pp. e0265026, 2022. DOI: 10.1371/journal.pone.0265026.
  • M. Ramzan, N. Shahmir, and H. A. S. Ghazwani, “Mixed convective Casson partially ionized nanofluid flow amidst two inclined concentric cylinders with gyrotactic microorganisms,” Waves Random Complex Media, pp. 1–21, 2022. DOI: 10.1080/17455030.2022.2110623.
  • D. Srinivasacharya and I. Sreenath, “Bioconvection in a couple-stress fluid flow between concentric cylinders,” Int. J. Eng. Sci., pp. 81–88, 2020.
  • E. A. Algehyne et al., “Numerical simulation of bioconvective Darcy Forchhemier nanofluid flow with energy transition over a permeable vertical plate,” Sci. Rep., vol. 12, no. 1, pp. 1–12, 2022. DOI: 10.1038/s41598-022-07254-9.
  • M. Ramzan, N. Shahmir, and H. A. S. Ghazwani, “Stefan blowing impact on bioconvective Maxwell nanofluid flow over an exponentially stretching cylinder with variable thermal conductivity,” Waves Random Complex Media, pp. 1–16, 2022. DOI: 10.1080/17455030.2022.2102269.
  • U. Farooq et al., “Computation of Cattaneo-Christov heat and mass flux model in Williamson nanofluid flow with bioconvection and thermal radiation through a vertical slender cylinder,” Case Stud. Therm. Eng., vol. 42, pp. 102736, 2023. DOI: 10.1016/j.csite.2023.102736.
  • S. U. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne, IL (United States): Argonne National Lab. (ANL), 1995.
  • J. Buongiorno, “Convective transport in nanofluids,” J. Heat Transf., vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • F. Javed and S. Nadeem, “Numerical solution of a Casson nanofluid flow and heat transfer analysis between concentric cylinders,” J. Power Technol., vol. 99, no. 1, pp. 25–30, 2019.
  • A. Khan, Z. Shah, E. Alzahrani, and S. Islam, “Entropy generation and thermal analysis for rotary motion of hydromagnetic Casson nanofluid past a rotating cylinder with Joule heating effect,” Int. Commun. Heat Mass Transf., vol. 119, pp. 104979, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104979.
  • M. Hirpho and W. Ibrahim, “Dynamics of flow in trapezoidal enclosure having a heated inner circular cylinder containing Casson nanofluid,” Heliyon, vol. 7, no. 7, pp. e07683, 2021. DOI: 10.1016/j.heliyon.2021.e07683.
  • J. V. Tawade et al., “Effects of thermophoresis and Brownian motion for thermal and chemically reacting Casson nanofluid flow over a linearly stretching sheet,” Res. Eng., vol. 15, pp. 100448, 2022. DOI: 10.1016/j.rineng.2022.100448.
  • B. Manvi et al., “The effects of MHD radiating and non-uniform heat source/sink with heating on the momentum and heat transfer of Eyring-Powell fluid over a stretching,” Res. Eng., vol. 14, pp. 100435, 2022. DOI: 10.1016/j.rineng.2022.100435.
  • S. Z. Abbas et al., “Modeling and analysis of unsteady second-grade nanofluid flow subject to mixed convection and thermal radiation,” Soft Comput., vol. 26, no. 3, pp. 1033–1042, 2022. DOI: 10.1007/s00500-021-06575-7.
  • M. Ramzan, H. Gul, M. Y. Malik, and H. A. S. Ghazwani, “Entropy minimization analysis of a partially ionized Casson nanofluid flow over a bidirectional stretching sheet with surface catalyzed reaction,” Arab. J. Sci. Eng., vol. 47, no. 12, pp. 15209–15221, 2022. DOI: 10.1007/s13369-021-06492-9.
  • M. Ramzan et al., “Impact of Newtonian heating and Fourier and Fick’s laws on a magnetohydrodynamic dusty Casson nanofluid flow with variable heat source/sink over a stretching cylinder,” Sci. Rep., vol. 11, no. 1, pp. 1–19, 2021. DOI: 10.1038/s41598-021-81747-x.
  • M. I. Khan et al., “Significance of temperature-dependent viscosity and thermal conductivity of Walter’s B nanoliquid when sinusodal wall and motile microorganisms density are significant,” Surf. Interfaces, vol. 22, pp. 100849, 2021. DOI: 10.1016/j.surfin.2020.100849.
  • U. Khan et al., “An exact solution of a Casson fluid flow induced by dust particles with hybrid nanofluid over a stretching sheet subject to Lorentz forces,” Waves Random Complex Media, pp. 1–14, 2022. DOI: 10.1080/17455030.2022.2102689.
  • Y. D. Reddy, F. Mebarek-Oudina, B. S. Goud, and A. I. Ismail, “Radiation, velocity and thermal slips effect toward MHD boundary layer flow through heat and mass transport of Williamson nanofluid with porous medium,” Arab. J. Sci. Eng., vol. 47, no. 12, pp. 16355–16369, 2022. DOI: 10.1007/s13369-022-06825-2.
  • G. Dharmaiah, F. Mebarek-Oudina, M. S. Kumar, and K. C. Kala, “Nuclear reactor application on Jeffrey fluid flow with Falkner-Skan factor, Brownian and thermophoresis, non-linear thermal radiation impacts past a wedge,” J. Indian Chem. Soc., vol. 100, no. 2, pp. 100907, 2023. DOI: 10.1016/j.jics.2023.100907.
  • M. Y. Malik, A. Hussain, and S. Nadeem, “Flow of a non-Newtonian nanofluid between coaxial cylinders with variable viscosity,” Z. Naturforsch., vol. 67, no. 5, pp. 255–261, 2012. DOI: 10.5560/zna.2012-0018.
  • J. Alam, M. G. Murtaza, E. E. Tzirtzilakis, and M. Ferdows, “Application of biomagnetic fluid dynamics modeling for simulation of flow with magnetic particles and variable fluid properties over a stretching cylinder,” Math. Comput. Simul., vol. 199, pp. 438–462, 2022. DOI: 10.1016/j.matcom.2022.04.008.
  • R. Ellahi, S. Aziz, and A. Zeeshan, “Non-Newtonian nanofluid flow through a porous medium between two coaxial cylinders with heat transfer and variable viscosity,” J. Por. Media, vol. 16, no. 3, pp. 205–216, 2013. DOI: 10.1615/JPorMedia.v16.i3.30.
  • R. Raza, M. Sohail, T. Abdeljawad, R. Naz, and P. Thounthong, “Exploration of temperature-dependent thermal conductivity and diffusion coefficient for thermal and mass transportation in sutterby nanofluid model over a stretching cylinder,” Complexity, vol. 2021, pp. 1–14, 2021. DOI: 10.1155/2021/6252864.
  • H. U. Rasheed, S. Islam, Zeeshan, T. Abbas, and J. Khan, “Analytical treatment of MHD flow and chemically reactive Casson fluid with Joule heating and variable viscosity effect,” Waves Random Complex Media, pp. 1–17, 2022. DOI: 10.1080/17455030.2022.2042622.
  • A. Samanta and H. Mondal, “Spectral quasilinearization method for Sisko nanofluid past a stretching cylinder with activation energy and entropy generation effects subject to variable thermal conductivity,” J. Heat Transf., vol. 51, no. 8, pp. 7773–7786, 2022. DOI: 10.1002/htj.22665.
  • M. Ramzan and H. Alotaibi, “Variable viscosity effects on the flow of MHD hybrid nanofluid containing dust particles over a needle with Hall current—a Xue model exploration,” Commun. Theor. Phys., vol. 74, no. 5, pp. 055801, 2022. DOI: 10.1088/1572-9494/ac64f2.
  • G. Mandal and D. Pal, “Dual solutions of radiative Ag-MoS_2/water hybrid nanofluid flow with variable viscosity and variable thermal conductivity along an exponentially shrinking permeable Riga surface: Stability and entropy generation analysis,” Int. J. Simul. Model., pp. 1–26, 2023. DOI: 10.1080/02286203.2023.2171656.
  • T. Fang, J. Zhang, and Y. Zhong, “Note on unsteady viscous flow on the outside of an expanding or contracting cylinder,” Commun. Nonlinear Sci. Numer. Simul., vol. 17, no. 8, pp. 3124–3128, 2012. DOI: 10.1016/j.cnsns.2011.12.013.
  • T. Salahuddin, A. M. Bashir, and M. Khan, “Numerical study on thermal performance of TiO2, Fe3O4 and NiCr/engine oil in an inclined wavy pip,” J. Indian Chem. Soc., vol. 99, no. 11, pp. 100719, 2022. DOI: 10.1016/j.jics.2022.100719.
  • M. Khan, T. Salahuddin, and R. Ali, “An entropy flow analysis by means of new similarity approach,” Int. Commun. Heat Mass Transf., vol. 129, pp. 105642, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105642.
  • C. N. Guled, J. V. Tawade, M. M. Nandeppanavar, and A. R. Saraf, “MHD slip flow and heat transfer of UCM fluid with the effect of suction/injection due to stretching sheet: OHAM solution,” Heat Transf., vol. 51, no. 4, pp. 3201–3218, 2022. DOI: 10.1002/htj.22444.
  • J. Tawade and P. G. Metri, “Numerical solution of boundary layer flow problem of a Maxwell fluid past a porous stretching surface,” Theory Stoch. Process., vol. 408, pp. 809–828, 2023. DOI: 10.1007/978-3-031-17820-7_37.
  • S. S. Benal, J. V. Tawade, M. M. Biradar, and H. L. Allasi, “Effects of the magnetohydrodynamic flow within the boundary layer of a jeffery fluid in a porous medium over a shrinking/stretching sheet,” Math. Probl. Eng., vol. 2022, pp. 1–11, 2022. DOI: 10.1155/2022/7326504.
  • F. Mebarek‐Oudina, “Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source,” Heat Transf.-Asian Res., vol. 48, no. 1, pp. 135–147, 2019. DOI: 10.1002/htj.21375.
  • F. Mebarek-Oudina and I. Chabani, “Review on nano-fluids applications and heat transfer enhancement techniques in different enclosures,” J. Nanofluids, vol. 11, no. 2, pp. 155–168, 2022. DOI: 10.1166/jon.2022.1834.
  • R. A. Shah and I. Ali, “Theoretical analysis of unsteady flow between two stretching cylinders with variable physical properties,” Int. J. Glob., vol. 8, no. 11, 2020. DOI: 10.3934/mbe.2022477.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.