Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 2
152
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A fractal–fractional model-based investigation of shape influence on thermal performance of tripartite hybrid nanofluid for channel flows

, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 155-186 | Received 22 Dec 2022, Accepted 25 Apr 2023, Published online: 07 Jul 2023

References

  • S. Soares, J. Sousa, A. Pais, and C. Vitorino, “Nanomedicine: Principles, properties, and regulatory issues,” Front. Chem., vol. 6, pp. 360, 2018. DOI: 10.3389/fchem.2018.00360.
  • K. V. Wong and O. D. Leon, “Applications of nanofluids: Current and future,” Adv. Mech. Eng., vol. 2, pp. 519659, 2010. DOI: 10.1155/2010/519659.
  • T. Salahuddin, S. Sakinder, S. O. Alharbi, and Z. Abdelmalek, “A brief comparative study of gamma alumina–water and gamma alumina–EG nanofluids flow near a solid sphere,” Math. Comput. Simul., vol. 181, pp. 487–500, 2021. DOI: 10.1016/j.matcom.2020.10.011.
  • N. T. El-Dabe, M. Y. Abou-Zeid, M. A. Mohamed, and M. M. Abd-Elmoneim, “MHD peristaltic flow of non–Newtonian power–law nanofluid through a non–Darcy porous medium inside a non–uniform inclined channel,” Arch. Appl. Mech., vol. 91, no. 3, pp. 1067–1077, 2021. DOI: 10.1007/s00419-020-01810-3.
  • U. Habib, S. Abdal, I. Siddique, and R. Ali, “A comparative study on micropolar, Williamson, Maxwell nanofluids flow due to a stretching surface in the presence of bioconvection, double diffusion and activation energy,” Int. Commun. Heat Mass Transf., vol. 127, pp. 105551, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105551.
  • A. Miles and R. Bessaih, “Heat transfer and entropy generation analysis of three–dimensional nanofluids flow in a cylindrical annulus filled with porous media,” Int. Commun. Heat Mass Transf., vol. 124, pp. 105240, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105240.
  • F. Shahzad et al., “Comparative numerical study of thermal features analysis between Oldroyd–B copper and molybdenum disulfide nanoparticles in engine–oil–based nanofluids flow,” Coatings, vol. 11, no. 10, pp. 1196, 2021. DOI: 10.3390/coatings11101196.
  • R. H. Monfared, M. Niknejadi, D. Toghraie, and P. Barnoon, “Numerical investigation of swirling flow and heat transfer of a nanofluid in a tube with helical ribs using a two-phase model,” J. Therm. Anal. Calorim., vol. 147, no. 4, pp. 3403–3416, 2022. DOI: 10.1007/s10973-021-10661-1.
  • W. Cai et al., “Eulerian-Lagrangian investigation of nanoparticle migration in the heat sink by considering different block shape effects,” Appl. Therm. Eng., vol. 199, pp. 117593, 2021. DOI: 10.1016/j.applthermaleng.2021.117593.
  • M. R. Saffarian, M. Moravej, and M. H. Doranehgard, “Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid,” Renew. Energy, vol. 146, pp. 2316–2329, 2020. DOI: 10.1016/j.renene.2019.08.081.
  • L. S. Sundar, M. H. Farooky, S. N. Sarada, and M. K. Singh, “Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids,” Int. Commun. Heat Mass Transf., vol. 41, pp. 41–46, 2013. DOI: 10.1016/j.icheatmasstransfer.2012.11.004.
  • A. S. Idowu and B. O. Falodun, “Effects of thermophoresis, Soret-Dufour on heat and mass transfer flow of magnetohydrodynamics non-Newtonian nanofluid over an inclined plate,” Arab. J. Basic Appl. Sci., vol. 27, no. 1, pp. 149–165, 2020. DOI: 10.1080/25765299.2020.1746017.
  • M. F. M. Basir et al., “Unsteady nano-bioconvective channel flow with effect of nth order chemical reaction,” Open Phys., vol. 18, no. 1, pp. 1011–1024, 2020. DOI: 10.1515/phys-2020-0156.
  • Z. Iqbal, E. Azhar, and E. N. Maraj, “Performance of nano-powders SiO2 and SiC in the flow of engine oil over a rotating disk influenced by thermal jump conditions,” Phys. A: Stat. Mech. Appl., vol. 565, pp. 125570, 2021. DOI: 10.1016/j.physa.2020.125570.
  • T. Hayat, H. Ullah, B. Ahmad, and M. S. Alhodaly, “Heat transfer analysis in convective flow of Jeffrey nanofluid by vertical stretchable cylinder,” Int. Commun. Heat Mass Transf., vol. 120, pp. 104965, 2021. DOI: 10.1016/j.icheatmasstransfer.2020.104965.
  • H. Lv and X. Chen, “New insights into the mechanism of fluid mixing in the micromixer based on alternating current electric heating with film heaters,” Int. Commun. Heat Mass Transf., vol. 181, pp. 121902, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121902.
  • A. Hafeez, M. Khan, A. Ahmed, and J. Ahmed, “Features of Cattaneo-Christov double diffusion theory on the flow of non-Newtonian Oldroyd-B nanofluid with Joule heating,” Appl. Nanosci., vol. 12, no. 3, pp. 265–272, 2022. DOI: 10.1007/s13204-020-01600-x.
  • I. Uddin, I. Ullah, R. Ali, I. Khan, and K. S. Nisar, “Numerical analysis of nonlinear mixed convective MHD chemically reacting flow of Prandtl-Eyring nanofluids in the presence of activation energy and Joule heating,” J. Therm. Anal. Calorim., vol. 145, no. 2, pp. 495–505, 2021. DOI: 10.1007/s10973-020-09574-2.
  • A. Kamran and E. Azhar, “Numerical outlook of a viscoelastic nanofluid in an inclined channel via Keller Box method,” Int. Commun. Heat Mass Transf., vol. 137, pp. 106260, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106260.
  • H. Lv, X. Chen, X. Wang, X. Zeng, and Y. Ma, “A novel study on a micromixer with Cantor fractal obstacle through grey relational analysis,” Int. Commun. Heat Mass Transf., vol. 183, pp. 122159, 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.122159.
  • I. Tlili, M. T. Mustafa, K. A. Kumar, and N. Sandeep, “Effect of asymmetrical heat rise/fall on the film flow of magnetohydrodynamic hybrid ferrofluid,” Sci. Rep., vol. 10, no. 1, pp. 1–11, 2020. DOI: 10.1038/s41598-020-63708-y.
  • S. Chalavadi, P. Madde, S. Naramgari, and A. G. Poojari, “Effect of variable heat generation/absorption on magnetohydrodynamic Sakiadis flow of Casson/Carreau hybrid nanoliquid due to a persistently moving needle,” Heat Transf., vol. 50, no. 8, pp. 8354–8377, 2021. DOI: 10.1002/htj.22280.
  • M. Shoaib et al., “Numerical analysis of 3-D MHD hybrid nanofluid over a rotational disk in presence of thermal radiation with Joule heating and viscous dissipation effects using Lobatto IIIA technique,” Alex. Eng. J., vol. 60, no. 4, pp. 3605–3619, 2021. DOI: 10.1016/j.aej.2021.02.015.
  • F. Ahmad et al., “The improved thermal efficiency of Maxwell hybrid nanofluid comprising of graphene oxide plus silver/kerosene oil over stretching sheet,” Case Stud. Therm. Eng., vol. 27, pp. 101257, 2021. DOI: 10.1016/j.csite.2021.101257.
  • Z. A. Alhussain and A. Tassaddiq, “Thin film blood based Casson hybrid nanofluid flow with variable viscosity,” Arab. J. Sci. Eng., vol. 47, no. 1, pp. 1087–1094, 2022. DOI: 10.1007/s13369-021-06067-8.
  • G. P. Ashwinkumar, S. P. Samrat, and N. Sandeep, “Convective heat transfer in MHD hybrid nanofluid flow over two different geometries,” Int. Commun. Heat Mass Transf., vol. 127, pp. 105563, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105563.
  • Z. Iqbal, N. S. Akbar, E. Azhar, and E. N. Maraj, “Performance of hybrid nanofluid (Cu-CuO/water) on MHD rotating transport in oscillating vertical channel inspired by Hall current and thermal radiation,” Alex. Eng. J., vol. 57, no. 3, pp. 1943–1954, 2018. DOI: 10.1016/j.aej.2017.03.047.
  • H. Lv, X. Chen, and X. Zeng, “Optimization of micromixer with Cantor fractal baffle based on simulated annealing algorithm,” Chaos Solit. Fractals, vol. 148, pp. 111048, 2021. DOI: 10.1016/j.chaos.2021.111048.
  • P. Barnoon, “Numerical assessment of heat transfer and mixing quality of a hybrid nanofluid in a microchannel equipped with a dual mixer,” Int. J. Thermofluids, vol. 12, pp. 100111, 2021. DOI: 10.1016/j.ijft.2021.100111.
  • M. Ouni, L. M. Ladhar, M. Omri, W. Jamshed, and M. R. Eid, “Solar water-pump thermal analysis utilizing copper-gold/engine oil hybrid nanofluid flowing in parabolic trough solar collector: Thermal case study,” Case Stud. Therm. Eng., vol. 30, pp. 101756, 2022. DOI: 10.1016/j.csite.2022.101756.
  • H. Lv, X. Chen, X. Li, Y. Ma, and D. Zhang, “Finding the optimal design of a Cantor fractal-based AC electric micromixer with film heating sheet by a three-objective optimization approach,” Int. Commun. Heat Mass Transf., vol. 131, pp. 105867, 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105867.
  • R. R. Sahoo, “Thermo-hydraulic characteristics of radiator with various shape nanoparticle-based ternary hybrid nanofluid,” Powder Technol., vol. 370, pp. 19–28, 2020. DOI: 10.1016/j.powtec.2020.05.013.
  • S. Kashyap, J. Sarkar, and A. Kumar, “Performance enhancement of regenerative evaporative cooler by surface alterations and using ternary hybrid nanofluids,” Energy, vol. 225, pp. 120199, 2021. DOI: 10.1016/j.energy.2021.120199.
  • V. Kumar and R. R. Sahoo, “4 E’s (Energy, Exergy, Economic, Environmental) performance analysis of air heat exchanger equipped with various twisted turbulator inserts utilizing ternary hybrid nanofluids,” Alex. Eng. J., vol. 61, no. 7, pp. 5033-5050, 2021.
  • T. H. Alarabi, A. M. Rashad, and A. Mahdy, “Homogeneous–heterogeneous chemical reactions of radiation hybrid nanofluid flow on a cylinder with Joule heating: Nanoparticles shape impact,” Coatings, vol. 11, no. 12, pp. 1490, 2021. DOI: 10.3390/coatings11121490.
  • S. Dinarvand, M. N. Rostami, and I. Pop, “A novel hybridity model for TiO2–CuO/water hybrid nanofluid flow over a static/moving wedge or corner,” Sci. Rep., vol. 9, no. 1, pp. 1–11, 2019. DOI: 10.1038/s41598-019-52720-6.
  • S. S. Ghadikolaei, M. Yassari, H. Sadeghi, K. Hosseinzadeh, and D. D. Ganji, “Investigation on thermophysical properties of TiO2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow,” Powder Technol., vol. 322, pp. 428–438, 2017. DOI: 10.1016/j.powtec.2017.09.006.
  • G. K. Ramesh, “Influence of shape factor on hybrid nanomaterial in a cross flow direction with viscous dissipation,” Phys. Scr., vol. 94, no. 10, pp. 105224, 2019. DOI: 10.1088/1402-4896/ab320a.
  • R. R. Sahoo, “Heat transfer and second law characteristics of radiator with dissimilar shape nanoparticle-based ternary hybrid nanofluid,” J. Therm. Anal. Calorim., vol. 146, no. 2, pp. 827–839, 2021. DOI: 10.1007/s10973-020-10039-9.
  • I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of their Applications. Elsevier, 1998.
  • M. Caputo and M. Fabrizio, “A new definition of fractional derivative without singular kernel,” Progr. Fract. Differ. Appl., vol. 1, no. 2, pp. 73–85, 2016. DOI: 10.18576/pfda/020101.
  • A. Atangana and D. Baleanu, “New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model,” Therm. Sci., vol. 4, no. 2, pp. 763–769, 2016.
  • A. Atangana, “Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system,” Chaos Solit. Fractals, vol. 102, pp. 396–406, 2017. DOI: 10.1016/j.chaos.2017.04.027.
  • V. E. Tarasov, “On history of mathematical economics: Application of fractional calculus,” Mathematics, vol. 7, no. 6, pp. 509, 2019. DOI: 10.3390/math7060509.
  • E. F. D. Goufo, M. Mbehou, and M. M. K. Pene, “A peculiar application of Atangana–Baleanu fractional derivative in neuroscience: Chaotic burst dynamics,” Chaos Solit. Fractals, vol. 115, pp. 170–176, 2018. DOI: 10.1016/j.chaos.2018.08.003.
  • M. Yavuz, “European option pricing models described by fractional operators with classical and generalized Mittag-Leffler kernels,” Numer. Methods Partial Differ. Equ., vol. 38, no. 3, pp. 434-456, 2020.
  • N. Faraz, Y. Khan, E. F. D. Goufo, A. Anjum, and A. Anjum, “Dynamic analysis of the mathematical model of COVID-19 with demographic effects,” Z. Naturforsch. C, vol. 75, no. 11–12, pp. 389–396, 2020. DOI: 10.1515/znc-2020-0121.
  • M. Yavuz and N. Ozdemir, “Numerical inverse Laplace homotopy technique for fractional heat equations,” Therm. Sci., vol. 22, no. Suppl. 1, pp. 185–194, 2018. DOI: 10.2298/TSCI170804285Y.
  • I. Siddique, I. Tlili, S. M. Bukhari, and Y. Mahsud, “Heat transfer analysis in convective flows of fractional second grade fluids with Caputo-Fabrizio and Atangana-Baleanu derivative subject to Newtonion heating,” Mech. Time-Depend. Mater., vol. 25, no. 3, pp. 291–311, 2021. DOI: 10.1007/s11043-019-09442-z.
  • M. I. Asjad, M. Aleem, A. Ahmadian, S. Salahshour, and M. Ferrara, “New trends of fractional modeling and heat and mass transfer investigation of (SWCNTs and MWCNTs)-CMC based nanofluids flow over inclined plate with generalized boundary conditions,” Chin. J. Phys., vol. 66, pp. 497–516, 2020. DOI: 10.1016/j.cjph.2020.05.026.
  • M. Ahmad, M. I. Asjad, and J. Singh, “Application of novel fractional derivative to heat and mass transfer analysis for the slippage flow of viscous fluid with single-wall carbon nanotube subject to Newtonian heating,” Math. Methods Appl. Sci., 2021. DOI: 10.1002/mma.7332.
  • T. Anwar, P. Kumam, P. Thounthong, and K. Sitthithakerngkiet, “Nanoparticles shape effects on thermal performance of Brinkman-type ferrofluid under heat injection/consumption and thermal radiation: A fractional model with non-singular kernel and non-uniform temperature and velocity conditions,” J. Mol. Liq., vol. 33, pp. 116107, 2021.
  • T. Elnaqeeb, N. A. Shah, and A. Rauf, “Natural convection flows of carbon nanotube Prabhakar-like fractional second-grade nanofluids over an infinite plate with Newtonian heating,” Math. Methods Appl. Sci., 2020. DOI: 10.1002/mma.6795.
  • C. Bardos, F. Golse, and B. Perthame, “The Rosseland approximation for the radiative transfer equations,” Commun. Pure Appl. Math., vol. 40, no. 6, pp. 691–721, 1987. DOI: 10.1002/cpa.3160400603.
  • K. R. Rajagopal, M. Ruzicka, and A. R. Srinivasa, “On the Oberbeck–Boussinesq approximation,” Math. Models Methods Appl. Sci., vol. 06, no. 08, pp. 1157–1167, 1996. DOI: 10.1142/S0218202596000481.
  • M. Saqib, I. Khan, and S. Shafie, “Shape effect in magnetohydrodynamic free convection flow of sodium alginate-ferrimagnetic nanofluid,” J. Therm. Sci. Eng. Appl., vol. 11, no. 4, Article no. 041019, 2019.
  • A. J. Chamkha, A. M. Rashad, A. Alsabery, Z. M. A. Abdelrahman, and H. A. Nabwey, “Impact of partial slip on magneto-ferrofluids mixed convection flow in enclosure,” J. Therm. Sci. Eng. Appl., vol. 12, no. 5, Article no. 051002, 2020.
  • R. L. Hamilton and O. K. Crosser, “Thermal conductivity of heterogeneous two-component systems,” Ind. Eng. Chem. Fund., vol. 1, no. 3, pp. 187–191, 1962. DOI: 10.1021/i160003a005.
  • F. Ali, B. Aamina, I. Khan, N. A. Sheikh, and M. Saqib, “Magnetohydrodynamic flow of Brinkman-type engine oil based MoS2-nanofluid in a rotating disk with hall effect,” IJHT, vol. 35, no. 4, pp. 893–902, 2017. DOI: 10.18280/ijht.350426.
  • C. Sulochana, S. R. Aparna, and N. Sandeep, “Magnetohydrodynamic MgO/CuO–water hybrid nanofluid flow driven by two distinct geometries,” Heat Transf., vol. 49, no. 6, pp. 3663–3682, 2020. DOI: 10.1002/htj.21794.
  • W. Jamshed, S. S. U. Devi, R. Safdar, F. Redouane, K. S. Nisar, and M. R. Eid, “Comprehensive analysis on copper-iron (II, III)/oxide-engine oil Casson nanofluid flowing and thermal features in parabolic trough solar collector,” J. Taibah Univ. Sci., vol. 15, no. 1, pp. 619–636, 2021. DOI: 10.1080/16583655.2021.1996114.
  • L. Colla, L. Fedele, M. Scattolini, and S. Bobbo, “Water-based Fe2O3 nanofluid characterization: Thermal conductivity and viscosity measurements and correlation,” Adv. Mech. Eng., vol. 4, pp. 674947, 2012. DOI: 10.1155/2012/674947.
  • G. Aaiza, I. Khan, and S. Shafie, “Energy transfer in mixed convection MHD flow of nanofluid containing different shapes of nanoparticles in a channel filled with saturated porous medium,” Nanoscale Res. Lett., vol. 10, no. 1, pp. 1–14, 2015.
  • O. D. Makinde and P. Y. Mhone, “Heat transfer to MHD oscillatory flow in a channel filled with porous medium,” Rom. J. Phys., vol. 50, pp. 931, 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.