Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 13
102
Views
4
CrossRef citations to date
0
Altmetric
Articles

Natural convection due to lateral uniform heat flux in a slender porous cavity saturated with nanofluid: Departure from LTE state

ORCID Icon & ORCID Icon
Pages 2045-2068 | Received 05 Jan 2023, Accepted 08 May 2023, Published online: 24 May 2023

References

  • M. Musto, N. Bianco, G. Rotondo, F. Toscano, and G. Pezzella, “A simplified methodology to simulate a heat exchanger in an aircraft’s oil cooler by means of a porous media model,” Appl. Therm. Eng., vol. 94, pp. 836–845, 2016. DOI: 10.1016/j.applthermaleng.2015.10.147.
  • A. A. Hussien, W. A. Kouz, M. E. Hassan, A. A. Janvekar, and A. J. Chamkha, “A review of flow and heat transfer in cavities and their applications,” Eur. Phys. J. Plus, vol. 136, no. 4, pp. 353, 2021. DOI: 10.1140/epjp/s13360-021-01320-3.
  • A. Koponen et al., “Permeability of three dimensional random fiber webs,” Phys. Rev. Lett., vol. 80, no. 4, pp. 716–719, 1998. DOI: 10.1103/PhysRevLett.80.716.
  • J. Fu et al., “Four kinds of the two-equation turbulence model’s research on flow field simulation performance of DPF’s porous media and swirl-type regeneration burner,” Appl. Therm. Eng., vol. 93, pp. 397–404, 2016. DOI: 10.1016/j.applthermaleng.2015.09.116.
  • P. R. Dando, D. Stuben, and S. P. Varnavas, “Hydrothermalism in the mediterranean sea,” Prog. Oceanogr., vol. 44, no. 13, pp. 333–367, 1999. DOI: 10.1016/S0079-6611(99)00032-4.
  • R. Ghasemizadeh et al., “Equivalent porous media (EPM) simulation of groundwater hydraulics and contaminant transport in karst aquifers,” PLoS One, vol. 10, no. 9, pp. e0138954, 2015. DOI: 10.1371/journal.pone.0138954.
  • S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” ASME-Publ.-Fed, vol. 231, pp. 99–106, 1995.
  • A. Bejan, “The boundary layer regime in a porous layer with uniform heat flux from the side,” Int. J. Heat Mass Transf., vol. 26, no. 9, pp. 1339–1346, 1983. DOI: 10.1016/S0017-9310(83)80065-9.
  • G. Degan, P. Vasseur, and E. Bilgen, “Convective heat transfer in a vertical anisotropic porous layer,” Int. J. Heat Mass Transf., vol. 38, no. 11, pp. 1975–1987, 1995. DOI: 10.1016/0017-9310(94)00330-X.
  • G. Degan and P. Vasseur, “Boundary-layer regime in a vertical porous layer with anisotropic permeability and boundary effects,” Int. J. Heat Mass Transf., vol. 18, no. 3, pp. 334–343, 1997. DOI: 10.1016/S0142-727X(97)00011-8.
  • P. Bera, V. Eswaran, and P. Singh, “Double-diffusive convection in slender anisotropic porous enclosures,” J. Porous Media, vol. 3, no. 1, pp. 11–29, 2000. DOI: 10.1615/JPorMedia.v3.i1.20.
  • P. Bera and A. Khalili, “Double-diffusive natural convection in an anisotropic porous cavity with opposing buoyancy forces: Multi-solutions and oscillations,” Int. J. Heat Mass Transf., vol. 45, no. 15, pp. 3205–3222, 2002. DOI: 10.1016/S0017-9310(02)00024-8.
  • H. Chandra, P. Bera, and A. K. Sharma, “Natural convection in a square cavity filled with an anisotropic porous medium due to sinusoidal heat flux on horizontal walls,” Numer. Heat Transf. A Appl., vol. 77, no. 3, pp. 317–341, 2020. DOI: 10.1080/10407782.2019.1690348.
  • H. Chandra and P. Bera, “Magneto-convection in an anisotropic porous cavity due to nonuniform heat flux at bottom wall,” Numer. Heat Transf. A Appl. DOI: 10.1080/10407782.2022.2104590.
  • H. Chandra and P. Bera, “Buoyancy-induced convective flow and heat transfer over obstacles embedded inside a Cu-water nanofluid-saturated porous cavity,” Numer. Heat Transf. A Appl., vol. 83, no. 7, pp. 726–744, 2023. DOI: 10.1080/10407782.2022.2160851.
  • M. Sankar, M. Bhuvaneswari, S. Sivasankaran, and Y. Do, “Buoyancy induced convection in a porous cavity with partially thermally active sidewalls,” Int. J. Heat Mass Transf., vol. 54, no. 2526, pp. 5173–5182, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.08.029.
  • M. Bhuvaneswari, S. Sivasankaran, and Y. J. Kim, “Effect of aspect ratio on convection in a porous enclosure with partially active thermal walls,” Comput. Math. Appl., vol. 62, no. 10, pp. 3844–3856, 2011. DOI: 10.1016/j.camwa.2011.09.033.
  • S. Sivasankaran and K. L. Pan, “Numerical simulation on mixed convection in a porous lid-driven cavity with nonuniform heating on both side walls,” Numer. Heat Transf. A, vol. 61, no. 2, pp. 101–121, 2012. DOI: 10.1080/10407782.2011.643741.
  • S. Sivasankaran and M. Bhuvaneswari, “Natural convection in a porous cavity with sinusoidal heating on both sidewalls,” Numer. Heat Transf. A Appl., vol. 63, no. 1, pp. 14–30, 2013. DOI: 10.1080/10407782.2012.715985.
  • H. T. Cheong, S. Sivasankaran, and M. Bhuvaneswari, “Natural convection in a wavy porous cavity with sinusoidal heating and internal heat generation,” Int. J. Numer. Methods Heat Fluid Flow, vol. 27, pp. 1–29, 2017.
  • S. Sivasankaran, M. A. Mansour, A. M. Rashad, and M. Bhuvaneswari, “MHD mixed convection of Cu-water nanofluid in a two-sided lid-driven porous cavity with a partial slip,” Numer. Heat Transf. A, vol. 70, no. 12, pp. 1356–1370, 2016. DOI: 10.1080/10407782.2016.1243957.
  • W. A. Kouz et al., “Heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid magnetic nanofluid flow in a trapezoidal wavy enclosure containing porous media with the Galerkin finite element method,” Eur. Phys. J. Plus, vol. 136, no. 11, pp. 1184, 2021. DOI: 10.1140/epjp/s13360-021-02192-3.
  • K. A. Farhany, K. K. A. Chlaihawi, M. F. A. Dawody, N. Biswas, and A. J. Chamkha, “Effects of fins on magnetohydrodynamic conjugate natural convection in a nanofluid-saturated porous inclined enclosure,” Int. Commun. Heat Mass Transf., vol. 126, pp. 105413, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105413.
  • C. C. Cho, “Natural convection of Cu-water nanofluid in enclosed cavity with porous effect and wavy surface based on energy-flux-vector visualization method,” Phys. Fluids, vol. 32, no. 10, pp. 103607, 2020. DOI: 10.1063/5.0024773.
  • A. Amiri, K. Vafai, and T. M. Kuzay, “Effects of boundary conditions on non-Darcian heat transfer through porous media and experimental comparisons,” Numer. Heat Transf. A Appl., vol. 27, no. 6, pp. 651–664, 1995. DOI: 10.1080/10407789508913724.
  • B. Alazmi and K. Vafai, “Constant wall heat flux boundary conditions in porous media under local thermal non-equilibrium conditions,” Int. J. Heat Mass Transf., vol. 45, no. 15, pp. 3071–3087, 2002. DOI: 10.1016/S0017-9310(02)00044-3.
  • S. Sivasankaran, T. Aasaithambi, and S. Rajan, “Natural convection of nanofluids in a cavity with linearly varying wall temperature,” Maejo Int. J. Sci. Technol., vol. 4, pp. 468–482, 2010.
  • S. Pippal and P. Bera, “A thermal non-equilibrium approach for 2D natural convection due to lateral heat flux: Square as well as slender enclosure,” Int. J. Heat Mass Transf., vol. 56, no. 12, pp. 501–515, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.09.003.
  • F. Wu, W. Zhou, and X. Ma, “Natural convection in a porous rectangular enclosure with sinusoidal temperature distributions on both side walls using a thermal non-equilibrium model,” Int. J. Heat Mass Transf., vol. 85, pp. 756–771, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.02.039.
  • M. Dehghan, M. S. Valipour, A. Keshmiri, S. Saedodin, and N. Shokri, “On the thermally developing forced convection through a porous material under the local thermal non-equilibrium condition: An analytical study,” Int. J. Heat Mass Transf., vol. 92, pp. 815–823, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.08.091.
  • P. Bera, S. Pippal, and A. Khan, “A thermal non-equilibrium approach on thermo-solutal natural convection due to the lateral flux of heat and solute on enclosure walls: Multi-solutions and oscillations,” Int. J. Heat Mass Transf., vol. 128, pp. 1322–1343, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.08.076.
  • A. C. Baytas, “Thermal non-equilibrium natural convection in a square enclosure filled with a heat-generating solid phase, non-Darcy porous medium,” Int. J. Energy Res., vol. 27, pp. 975–988, 2003.
  • F. Wu, G. Wang, and W. Zhou, “A thermal non-equilibrium approach to natural convection in a square enclosure due to the partial cooled sidewalls of the enclosure,” Numer. Heat Transf. A Appl., vol. 67, no. 7, pp. 771–790, 2015. DOI: 10.1080/10407782.2014.949189.
  • F. Wu, D. Lu, and G. Wang, “Numerical analysis of natural convection in a porous cavity with the sinusoidal thermal boundary condition using a thermal nonequilibrium model,” Numer. Heat Transf. A Appl., vol. 69, no. 11, pp. 1280–1296, 2016. DOI: 10.1080/10407782.2015.1127025.
  • F. Wu, G. Wang, and W. Zhou, “Aspect ratio effect on natural convection in a square enclosure with a sinusoidal active thermal wall using a thermal non-equilibrium model,” Numer. Heat Transf. A Appl., vol. 70, no. 3, pp. 310–329, 2016. DOI: 10.1080/10407782.2016.1173474.
  • M. Dehghan, M. S. Valipour, S. Saedodin, and Y. Mahmoudi, “Thermally developing flow inside a porous-filled channel in the presence of internal heat generation under local thermal non-equilibrium condition: A perturbation analysis,” Appl. Therm. Eng., vol. 98, pp. 827–834, 2016. DOI: 10.1016/j.applthermaleng.2015.12.133.
  • A. M. Rashad, S. Sivasankaran, M. A. Mansour, and M. Bhuvaneswari, “Magneto-convection of nanofluids in a lid-driven trapezoidal cavity with internal heat generation and discrete heating,” Numer. Heat Transf. A: Appl., vol. 71, no. 12, pp. 1223–1234, 2017. DOI: 10.1080/10407782.2017.1347000.
  • A. F. Baytas and A. C. Baytas, “Thermal non-equilibrium natural convection in a square enclosure with heat-generating porous layer on inner walls,” Transp. Porous Media, vol. 120, pp. 167–182, 2017.
  • S. A. Mikhailenko and M. A. Sheremet, “Impacts of rotation and local element of variable heat generation on convective heat transfer in a partially porous cavity using local thermal non-equilibrium model,” Int. J. Therm. Sci., vol. 155, pp. 106427–1, 2020. DOI: 10.1016/j.ijthermalsci.2020.106427.
  • A. C. Baytas and I. Pop, “Free convection in a square porous cavity using a thermal nonequilibrium model,” Int. J. Therm. Sci., vol. 41, no. 9, pp. 861–870, 2002. DOI: 10.1016/S1290-0729(02)01379-0.
  • P. Bera, S. Pippal, and A. K. Sharma, “A thermal non-equilibrium approach on double-diffusive natural convection in a square porous-medium cavity,” Int. J. Heat Mass Transf., vol. 78, pp. 1080–1094, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.041.
  • M. A. Sheremet, I. Pop, and R. Nazar, “Natural convection in a square cavity filled with a porous medium saturated with a nanofluid using the thermal non-equilibrium model with a Tiwari and Das nano-fluid model,” Int. J. Mech. Sci., vol. 100, pp. 312–321, 2015. DOI: 10.1016/j.ijmecsci.2015.07.007.
  • S. Sivasankaran, A. I. Alsabery, and I. Hashim, “Internal heat generation effect on transient natural convection in a nanofluid-saturated local thermal non-equilibrium porous inclined cavity,” Phys. A, vol. 509, pp. 275–293, 2018. DOI: 10.1016/j.physa.2018.06.036.
  • S. A. M. Mehryan, M. Ghalambaz, A. J. Chamkha, and M. Izadi, “Numerical study on natural convection of Ag-MgO hybrid/water nanofluid inside a porous enclosure: A local thermal non-equilibrium model,” Powder Technol., vol. 367, pp. 443–455, 2020. DOI: 10.1016/j.powtec.2020.04.005.
  • H. C. Brinkman, “The viscosity of concentrated suspensions and solutions,” J. Chem. Phys., vol. 20, no. 4, pp. 571–571, 1952. DOI: 10.1063/1.1700493.
  • T. Basak and A. J. Chamkha, “Heatline analysis on natural convection for nanofluids confined within square cavities with various thermal boundary conditions,” Int. J. Heat Mass Transf., vol. 55, no. 2122, pp. 5526–5543, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.05.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.