Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 13
124
Views
2
CrossRef citations to date
0
Altmetric
Articles

Mixed convection heat transfer and entropy generation of water inside a square vented enclosure with and without four vibrating cylinders in horizontal and vertical directions

ORCID Icon, , , , , , ORCID Icon, ORCID Icon & show all
Pages 2069-2095 | Received 16 Nov 2022, Accepted 08 May 2023, Published online: 25 May 2023

References

  • M. H. Park and J. H. Lee, “Turbulent natural convection flow and heat transfer in an inclined square enclosure,” KSME J., vol. 6, no. 1, pp. 16–23, 1992. DOI: 10.1007/BF02954459.
  • A. H. Mahmoudi, M. Shahi and F. Talebi, “Entropy generation due to natural convection in a partially open cavity with a thin heat source subjected to a nanofluid,” Numer. Heat Transf. A, vol. 61, no. 4, pp. 283–305, 2012. DOI: 10.1080/10407782.2012.647990.
  • P. Moodley, “1 - Sustainable biofuels: Opportunities and challenges,” in Applied Biotechnology Reviews, Sustainable Biofuels, R. C. Ray, Ed. Academic Press, 2021, pp. 1–20. DOI: 10.1016/B978-0-12-820297-5.00003-7.
  • P. Moodley and C. Trois, “2 - Lignocellulosic biorefineries: The path forward,” in Applied Biotechnology Reviews, Sustainable Biofuels, R. C. Ray, Ed. Academic Press, 2021, pp. 21–42. DOI: 10.1016/B978-0-12-820297-5.00010-4.
  • T. N. Abdelhameed, “Entropy generation analysis for MHD flow of water past an accelerated plate,” Sci. Rep., vol. 11, no. 1, pp. 11964, 2021. DOI: 10.1038/s41598-021-89744-w.
  • Z. M. Mburu, S. Mondal, P. Sibanda, and R. A. Sharma, “A numerical study of entropy generation on oldroyd-B nanofluid flow past a riga plate,” J. Therm. Eng., vol. 7, no. 4, pp. 845–866, 2021. DOI: 10.18186/thermal.930653.
  • W. S. Fu, C. S. Cheng, and W. J. Shieh, “Enhancement of natural convection heat transfer of an enclosure by a rotating circular cylinder,” Int. J. Heat Mass Transf., vol. 37, no. 13, pp. 1885–1897, 1994. DOI: 10.1016/0017-9310(94)90329-8.
  • L. B. Erbay, Z. Altac, and B. Sulus, “Entropy generation in a square enclosure with partial heating from a vertical lateral wall,” Heat Mass Transf., vol. 40, no. 12, pp. 909–918, 2004. DOI: 10.1007/s00231-003-0497-x.
  • M. Sheikholeslami, R. Ellahi, M. Hassan, and S. Soleimani, “A study of natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder,” Int. J. Numer. Methods Heat Fluid Flow, vol. 24, no. 8, pp. 1906–1927, 2014. DOI: 10.1108/HFF-07-2013-0225.
  • Y. F. Wang et al., “Laminar mixed convection heat transfer of SiC-EG nanofluids in a triangular enclosure with a rotating inner cylinder: Simulations based on the measured thermal conductivity and viscosity,” J. Zhejiang Univ. Sci. A, vol. 16, no. 6, pp. 478–490, 2015. DOI: 10.1631/jzus.A1400120.
  • A. I. Alsabery, T. Tayebi, R. Roslan, A. J. Chamkha, and I. Hashim, “Entropy generation and mixed convection flow inside a wavy-walled enclosure containing a rotating solid cylinder and a heat source,” Entropy, vol. 22, no. 6, pp. 606, 2020. DOI: 10.3390/e22060606.
  • K. Yazdani, M. Sahebjamei, and A. Ahmadpour, “Natural convection heat transfer and entropy generation in a porous trapezoidal enclosure saturated with power-law non-Newtonian fluids,” Heat Transf. Eng., vol. 41, no. 11, pp. 982–1001, 2020. DOI: 10.1080/01457632.2019.1589993.
  • S. Dutta, N. Goswami, S. Pati, and A. K. Biswas, “Natural convection heat transfer and entropy generation in a porous rhombic enclosure: Influence of non‑uniform heating,” J. Therm. Anal. Calorim., vol. 144, no. 4, pp. 1493–1515, 2021. DOI: 10.1007/s10973-020-09634-7.
  • R. Lemlich, “Effect of vibration on natural convective heat transfer,” Ind. Eng. Chem., vol. 47, no. 6, pp. 1175–1180, 1955. DOI: 10.1021/ie50546a024.
  • R. M. Russ, “Effect of vibration on heat transfer from cylinders in free convection,” M.Sc. thesis, Faculty of the School of Engineering of the Air Force Institute of Technology, Air University, 1962.
  • J. M. Faircloth and W. J. Schaetzle, “Effect of vibration on heat transfer for flow normal to a cylinder,” J. Heat Transf., vol. 91, no. 1, pp. 140–144, 1969. DOI: 10.1115/1.3580070.
  • K. K. Prasad and V. Ramanathan, “Heat transfer by free convection from a longitudinally vibrating vertical plate,” Int. J. Heat Mass Transf., vol. 15, no. 6, pp. 1213–1223, 1972. DOI: 10.1016/0017-9310(72)90186-X.
  • H. Kimoto, A. Kadotsuji, and T. Hirose, “Effect of vibration on the natural convection heat transfer of a horizontal cylinder,” Bull. JSME, vol. 26, no. 217, pp. 1154–1161, 1983. DOI: 10.1299/jsme1958.26.1154.
  • M. A. Shalaby, E. A. Elnegiry, and H. R. El-Tahan, “Forced convection heat transfer from oscilating horizontal cylinder,” Mansoura Eng. J., vol. 28, no. 4, pp. 1–14, 2021. DOI: 10.21608/bfemu.2021.142396.
  • W. S. Fu and W. J. Shieh, “A study of thermal convection in an enclosure induced simultaneously by gravity and vibration,” Int. J. Heat Mass Transf., vol. 35, no. 7, pp. 1695–1710, 1992. DOI: 10.1016/0017-9310(92)90140-N.
  • W. S. Fu and W. J. Shieh, “Transient thermal convection in an enclosure induced simultaneously by gravity and vibration,” Int. J. Heat Mass Transf., vol. 36, no. 2, pp. 437–452, 1993. DOI: 10.1016/0017-9310(93)80019-Q.
  • W. S. Fu and C. P. Huang, “Effects of a vibrational heat surface on natural convection in a vertical channel flow,” Int. J. Heat Mass Transf., vol. 49, no. 78, pp. 1340–1349, 2006. DOI: 10.1016/j.ijheatmasstransfer.2005.10.028.
  • P. Xie and X. Zhang, “Study of laminar convection heat transfer in single-side-heating small-scale cooling channel with vibrating cylinder,” Int. Commun. Heat Mass Transf., vol. 120, pp. 105030, 2021. DOI: 10.1016/j.icheatmasstransfer.2020.105030.
  • M. M. Al-Azzawi, A. R. Abdullah, B. M. Majel, and L. J. Habeeb, “Experimental investigation of the effect of forced vibration on natural heat transfer in a concentric vertical cylinder,” J. Mech. Eng. Res. Dev., vol. 44, no. 3, pp. 56–65, 2021.
  • V. Kozlov, K. Rysin, and A. Vjatkin, “Vibroconvective patterns in a layer under translational vibrations of circular polarization,” Fluids, vol. 6, no. 3, pp. 108, 2021. DOI: 10.3390/fluids6030108.
  • S. Sivasankaran, V. Sivakumar, and A. K. Hussein, “Numerical study on mixed convection in an inclined lid-driven cavity with discrete heating,” Int. Commun. Heat Mass Transf., vol. 46, pp. 112–125, 2013. DOI: 10.1016/j.icheatmasstransfer.2013.05.022.
  • I. I. Nosonov and M. A. Sheremet, “Conjugate mixed convection in a rectangular cavity with a local heater,” Int. J. Mech. Sci., vol. 136, pp. 243–251, 2018. DOI: 10.1016/j.ijmecsci.2017.12.049.
  • W. Cao, I. L. Animasaun, S. J. Yook, V. A. Oladipupo, and X. Ji, “Simulation of the dynamics of colloidal mixture of water with various nanoparticles at different levels of partial slip: Ternary-hybrid nanofluid,” Int. Commun. Heat Mass Transf., vol. 135, pp. 106069, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106069.
  • H. M. Blackburn and R. D. Henderson, “A study of two-dimensional flow past an oscillating cylinder,” J. Fluid Mech., vol. 385, pp. 255–286, 1999. DOI: 10.1017/S0022112099004309.
  • A. Islam, M. D. Rony, M. Islam, E. H. Chowdhury, and M. N. Hasan, “Mixed convective heat transfer enhancement in a ventilated cavity by flow modulation via rotating plate,” Heat Transf., vol. 50, no. 3, pp. 2339–2361, 2021. DOI: 10.1002/htj.21981.
  • A. Roshko, “Experiments on the flow past a circular cylinder at very high Reynolds number,” J. Fluid Mech., vol. 10, no. 3, pp. 345–356, 1961. DOI: 10.1017/S0022112061000950.
  • O. Lehmkuhl, L. Rodríguez, R. Borrell, J. Chiva, and A. Oliva, “Unsteady forces on a circular cylinder at critical Reynolds numbers,” Phys. Fluids, vol. 26, no. 12, pp. 125110, 2014. DOI: 10.1063/1.4904415.
  • A. Bejan, Entropy Generation Minimization. USA: CRC Press, 1966.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow. New York: McGraw-Hill, 1980.
  • A. Maougal and R. Bessaih, “Heat transfer an entropy analysis for mixed convection in a discretely heated porous square cavity,” Fluid Dyn. Mater. Process., vol. 9, no. 1, pp. 35–59, 2013. DOI: 10.3970/fdmp.2013.009.035.
  • A. J. Chamkha, S. H. Hussain, and Q. R. Abd-Amer, “Mixed convection heat transfer of air inside a square vented cavity with a heated horizontal square cylinder,” Numer. Heat Transf. A, vol. 59, no. 1, pp. 58–79, 2011. DOI: 10.1080/10407782.2011.541216.
  • M. Nallasamy and K. K. Prassad, “On the cavity flow at high Reynolds numbers,” J. Fluid Mech., vol. 79, no. 2, pp. 391–414, 1977. DOI: 10.1017/S0022112077000214.
  • J. Zhang, B. Xiao, and W. Yang, “Numerical study of lid-driven square cavity flow with embedded circular obstacles using spectral/hp element methods,” Appl. Sci., vol. 12, no. 22, pp. 11711, 2022. DOI: 10.3390/app122211711.
  • M. M. Rahman et al., “Effects of Reynolds and Prandtl number on mixed convection in a ventilated cavity with a heat-generating solid circular block,” Appl. Math. Model., vol. 36, no. 5, pp. 2056–2066, 2012. DOI: 10.1016/j.apm.2011.08.014.
  • A. Yasin, N. Ullah, S. Nadeem, and H. A. Ghazwani, “Numerical simulation for mixed convection in a parallelogram enclosure: Magnetohydrodynamic (MHD) and moving wall-undulation effects,” Int. Commun. Heat Mass Transf., vol. 135, pp. 106066, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106066.
  • N. Shirani and D. Toghraie, “Numerical investigation of transient mixed convection of nanofluid in a cavity with non-Darcy porous inner block and rotating cylinders with harmonic motion,” Sci. Rep., vol. 11, no. 1, pp. 17281, 2021. DOI: 10.1038/s41598-021-96733-6.
  • S. S. Arasavelli, R. Konijeti, and G. R. Budda, “Positive impact of vibration on heat transfer in twisted tape inserted heat exchanger,” J. Therm. Eng., vol. 7, no. 7, pp. 1731–1742, 2021. DOI: 10.18186/thermal.1025962.
  • M. Ghalambaz, E. Jamesahar, M. A. Ismael, and A. J. Chamkha, “Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity,” Int. J. Therm. Sci., vol. 111, pp. 256–273, 2017. DOI: 10.1016/j.ijthermalsci.2016.09.001.
  • M. Roy, T. Basak, S. Roy, and I. Pop, “Analysis of entropy generation for mixed convection in a square cavity for various thermal boundary conditions,” Numer. Heat Transf. A, vol. 68, no. 1, pp. 44–74, 2015. DOI: 10.1080/10407782.2014.955352.
  • S. Soleimani, A. Qajarjazi, H. Barari, A. Barari, and G. Domairry, “Entropy generation due to natural convection in a partially heated cavity by local RBF-DQ method,” Meccanica, vol. 46, no. 5, pp. 1023–1033, 2011. DOI: 10.1007/s11012-010-9358-0.
  • S. M. H. Zadeh, S. A. M. Mehryan, M. S. Islam, and M. Ghalambaz, “Irreversibility analysis of a thermally driven flow of a water-based suspension with dispersed nano-sized capsules of phase change material,” Int. J. Heat Mass Transf., vol. 155, pp. 119796, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119796.
  • I. L. Animasaun et al., Ratio of Momentum Diffusivity to Thermal Diffusivity: Introduction, Meta-Analysis, and Scrutinization. New York: Chapman and Hall/CRC, 2022.
  • S. Saleem et al., “Insight into the motion of water conveying three kinds of nanoparticles shapes on a horizontal surface: Significance of thermo-migration and Brownian motion,” Surf. Interfaces, vol. 30, pp. 101854, 2022. DOI: 10.1016/j.surfin.2022.101854.
  • I. L. Animasaun, R. O. Ibraheem, B. Mahanthesh, and H. A. Babatunde, “A meta-analysis on the effects of haphazard motion of tiny/nano-sized particles on the dynamics and other physical properties of some fluids,” Chin. J. Phys., vol. 60, pp. 676–687, 2019. DOI: 10.1016/j.cjph.2019.06.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.