Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 13
161
Views
0
CrossRef citations to date
0
Altmetric
Articles

An effective thermal conductivity model for the three-phase porous media based on the numerical simulation

, , , &
Pages 2112-2127 | Received 13 Mar 2023, Accepted 15 May 2023, Published online: 05 Jun 2023

References

  • Y. Dong, J. S. McCartney, and N. Lu, “Critical review of thermal conductivity models for unsaturated soils,” Geotech. Geol. Eng., vol. 33, no. 2, pp. 207–221, 2015. DOI: 10.1007/s10706-015-9843-2.
  • K. Pietrak and T. S. Wisniewski, “A review of models for effective thermal conductivity of composite materials,” J. Power Technol., vol. 95, no. 1, pp. 14–24, 2014.
  • G. S. Jia, Z. Y. Tao, X. Z. Meng, C. F. Ma, J. C. Chai, and L. W. Jin, “Review of effective thermal conductivity models of rock-soil for geothermal energy applications,” Geothermics., vol. 77, pp. 1–11, 2019. DOI: 10.1016/j.geothermics.2018.08.001.
  • J. K. Lee, “Prediction of thermal conductivity of composites with spherical fillers by successive embedding,” Arch. Appl. Mech., vol. 77, no. 7, pp. 453–460, 2007. DOI: 10.1007/s00419-006-0108-7.
  • S. Torquato, Random Heterogeneous Materials, Salvatore Torquato. New York: Springer-Verlag, 2002.
  • Y. Xi and A. Nakhi, “Composite damage models for diffusivity of distressed materials,” J. Mater. Civ. Eng., vol. 17, no. 3, pp. 286–295, 2005. DOI: 10.1061/(ASCE)0899-1561(2005)17:3(286).
  • E. Skripkin, Effective Thermal Conductivity of Porous Media: An Integrated Approach. Calgary: University of Calgary, 2015.
  • D. A. Nield and A. Bejan, “Heat transfer through a porous medium,” In Convection in Porous Media. New York: Springer, 2013.
  • D. Kunii and J. M. Smith, “Heat transfer characteristics of porous rocks,” AIChE J., vol. 6, no. 1, pp. 71–78, 1960. DOI: 10.1002/aic.690060115.
  • R. Krupiczka, “Analysis of thermal conductivity in granular materials,” Int. Chem. Eng., vol. 7, no. 1, pp. 122–144, 1967.
  • P. Zehner and E. U. Schlunder, “Thermal conductivity of granular materials at moderate temperatures,” Chemie. Ingr.-Technol., vol. 42, no. 14, pp. 933–941, 1970. DOI: 10.1002/cite.330421408.
  • C. T. Hsu, P. Cheng, and K. W. Wong, “Modified Zehner-Schlunder models for stagnant thermal conductivity of porous media,” Int. J. Heat Mass Transf., vol. 37, no. 17, pp. 2751–2759, 1994. DOI: 10.1016/0017-9310(94)90392-1.
  • C. T. Hsu, P. Cheng, and K. W. Wong, “A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media,” J. Heat Transf., vol. 117, no. 2, pp. 264–269, 1995. DOI: 10.1115/1.2822515.
  • D. A. Nield, “Estimation of the stagnant thermal conductivity of saturated porous media,” Int. J. Heat Mass Transf., vol. 34, no. 6, pp. 1575–1576, 1991. DOI: 10.1016/0017-9310(91)90300-4.
  • V. Prasad, N. Kladias, A. Bandyopadhaya, and Q. Tian, “Evaluation of correlations for stagnant thermal conductivity of liquid-saturated porous beds of spheres,” Int. J. Heat Mass Transf., vol. 32, no. 9, pp. 1793–1796, 1989. DOI: 10.1016/0017-9310(89)90061-6.
  • L. Rayleigh, “On the influence of obstacles arranged in rectangular order upon the properties of a medium,” Lond. Edinb. Dublin Philos. Mag. J. Sci., vol. 34, no. 211, pp. 481–502, 1892. DOI: 10.1080/14786449208620364.
  • Z. Hashin and S. Shtrikman, “A variational approach to the theory of the effective magnetic permeability of multiphase materials,” J. Appl. Phys., vol. 33, no. 10, pp. 3125–3131, 1962. DOI: 10.1063/1.1728579.
  • D. P. H. Hasselman and L. F. Johnson, “Effective thermal conductivity of composites with interfacial thermal barrier resistance,” J. Compos. Mater., vol. 21, no. 6, pp. 508–515, 1987. DOI: 10.1177/002199838702100602.
  • M. Shaker, E. Birgersson, and A. S. Mujumdar, “Extended Maxwell model for the thermal conductivity of nanofluids that accounts for nonlocal heat transfer,” Int. J. Therm. Sci., vol. 84, pp. 260–266, 2014. DOI: 10.1016/j.ijthermalsci.2014.05.010.
  • J. F. Wang, J. K. Carson, M. F. North, and D. J. Cleland, “A new structural model of effective thermal conductivity for heterogeneous materials with co-continuous phases,” Int. J. Heat Mass Transf., vol. 51, no. 9-10, pp. 2389–2397, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.08.028.
  • F. Tong, L. Jing, and R. W. Zimmerman, “An effective thermal conductivity model of geological porous media for coupled thermo-hydro-mechanical systems with multiphase flow,” Int. J. Rock Mech. Min. Sci., vol. 46, no. 8, pp. 1358–1369, 2009. DOI: 10.1016/j.ijrmms.2009.04.010.
  • L. Pan, L. X. Lu, J. Wang, and X. L. Qiu, “Modeling the effect of gas on the effective thermal conductivity of heterogeneous materials,” Int. J. Heat Mass Transf., vol. 90, pp. 358–363, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.06.053.
  • J. Yuan, W. Chen, X. Tan, W. Ma, Y. Zhou, and W. Zhao, “An effective thermal conductivity model of rocks considering variable saturation and pore structure: theoretical modelling and experimental validations,” Int. Commun. Heat Mass Transf., vol. 121, pp. 105088, 2021. DOI: 10.1016/j.icheatmasstransfer.2020.105088.
  • X. Qin, J. Cai, P. Xu, S. Dai, and Q. Gan, “A fractal model of effective thermal conductivity for porous media with various liquid saturation,” Int. J. Heat Mass Transf., vol. 128, pp. 1149–1156, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.09.072.
  • B. Xiao, Q. Huang, H. Chen, X. Chen, and G. Long, “A fractal model for capillary flow through a single tortuous capillary with roughened surfaces in fibrous porous media,” Fractals., vol. 29, no. 01, pp. 2150017, 2021. DOI: 10.1142/S0218348X21500171.
  • M. Liang, C. Fu, B. Xiao, L. Luo, and Z. Wang, “A fractal study for the effective electrolyte diffusion through charged porous media,” Int. J. Heat Mass Transf., vol. 137, pp. 365–371, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.141.
  • B. Xiao et al., “A novel fractal solution for permeability and Kozeny-Carman constant of fibrous porous media made up of solid particles and porous fibers,” Powder Technol., vol. 349, pp. 92–98, 2019. DOI: 10.1016/j.powtec.2019.03.028.
  • B. Xiao, H. Zhu, F. Chen, G. Long, and Y. Li, “A fractal analytical model for Kozeny-Carman constant and permeability of roughened porous media composed of particles and converging-diverging capillaries,” Powder Technol., vol. 420, pp. 118256, 2023. DOI: 10.1016/j.powtec.2023.118256.
  • J. Kosek, F. Štěpánek, and M. Marek, “Modelling of transport and transformation processes in porous and multiphase bodies,” Adv. Chem. Eng., vol. 30, pp. 137–203, 2005. DOI: 10.1016/S0065-2377(05)30003-2.
  • V. Novák, F. Štěpánek, P. Kočí, M. Marek, and M. Kubíček, “Evaluation of local pore sizes and transport properties in porous catalysts,” Chem. Eng. Sci., vol. 65, no. 7, pp. 2352–2360, 2010. DOI: 10.1016/j.ces.2009.09.009.
  • G. Frederic, F. Ronald, and O. Stanley, “A review of level-set methods and some recent applications,” J. Comput. Phys., vol. 353, pp. 82–109, 2018. DOI: 10.1016/j.jcp.2017.10.006.
  • C. W. Shu and S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes,” J. Comput. Phys., vol. 83, no. 1, pp. 32–78, 1989. DOI: 10.1016/0021-9991(88)90177-5.
  • A. M. Tang, Y. J. Cui, and T. T. Le, “A study on the thermal conductivity of compacted bentonites,” Appl. Clay Sci., vol. 41, no. 3-4, pp. 181–189, 2008. DOI: 10.1016/j.clay.2007.11.001.
  • W. L. McCabe, J. C. Smith, and P. Harriot, Unit Operations of Chemical Engineering, 6th ed. New York: McGraw-Hill, 2001.
  • J. K. Carson, S. J. Lovatt, D. J. Tanner, and A. C. Cleland, “Predicting the effective thermal conductivity of unfrozen porous foods,” J. Food Eng., vol. 75, no. 3, pp. 297–307, 2006. DOI: 10.1016/j.jfoodeng.2015.12.006.
  • L. S. Verma, A. K. Shrotriya, R. Singh, and D. R. Chaudhary, “Prediction and measurement of effective thermal conductivity of three-phase systems,” J. Phys. D Appl. Phys., vol. 24, no. 9, pp. 1515–1526, 1991. DOI: 10.1088/0022-3727/24/9/002.
  • C. Ould-Lahoucine, H. Sakashita, and T. Kumada, “Measurement of thermal conductivity of buffer materials and evaluation of existing correlations predicting it,” Nucl. Eng. Des., vol. 216, no. 1-3, pp. 1–11, 2002. DOI: 10.1016/S0029-5493(02)00033-X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.