Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 13
148
Views
3
CrossRef citations to date
0
Altmetric
Articles

A comprehensive analysis of a rectangular microchannel heat sink furnished with a circular perforated cylindrical pinfin

, ORCID Icon, &
Pages 2128-2144 | Received 29 Dec 2022, Accepted 19 May 2023, Published online: 05 Jun 2023

References

  • D. B. Tuckerman and R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron Device Lett., vol. 2, no. 5, pp. 126–129, 1981. DOI: 10.1177/0164027595174002.
  • G. D. Xia, J. Jiang, J. Wang, Y. L. Zhai, and D. D. Ma, “Effects of different geometric structures on fluid flow and heat transfer performance in microchannel heat sinks,” Int. J. Heat Mass Transf., vol. 80, pp. 439–447, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.08.095.
  • V. R. Kumar, K. Balasubramanian, N. Tiwari, K. Bhatia, and K. K. Kumar, “Numerical investigation of heat transfer enhancement in wavy microchannel with tangential branched secondary channels,” Asia-Pacific J. Chem. Eng., vol. 14, pp. 1–13, 2019. DOI: 10.1002/apj.2325.
  • Y. Peng, Z. Li, S. Li, B. Cao, X. Wu, and X. Zhao, “The experimental study of the heat transfer performance of a zigzag-serpentine microchannel heat sink,” Int. J. Therm. Sci., vol. 163, no. January, pp. 106831, 2021. DOI: 10.1016/j.ijthermalsci.2021.106831.
  • G. Wang, et al., “Experimental and numerical investigation of fractal-tree-like heat exchanger manufactured by 3D printing,” Chem. Eng. Sci., vol. 195, pp. 250–261, 2019. DOI: 10.1016/j.ces.2018.07.021.
  • S. S. Hsieh, Y. C. Hsieh, Y. C. Hsu, and C. F. Huang, “Low Reynolds numbers convective heat transfer enhancement in roughened microchannels,” Int. Commun. Heat Mass Transf., vol. 112, pp. 104486, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104486.
  • T. Karayiannis and M. M. Mahmoud, “Flow boiling in microchannels: fundamentals and applications,” Adv. Heat Transf., vol. 49, pp. 157–224, 2017. DOI: 10.1016/bs.aiht.2017.06.001.
  • R. Mohebbi, M. M. Rashidi, M. Izadi, N. A. C. Sidik, and H. W. Xian, “Forced convection of nanofluids in an extended surfaces channel using lattice Boltzmann method,” Int. J. Heat Mass Transf., vol. 117, pp. 1291–1303, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.10.063.
  • C. H. Hoang et al., “Hybrid microchannel/multi-jet two-phase heat sink: a benchmark and geometry optimization study of commercial product,” Int. J. Heat Mass Transf., vol. 169, no. April, pp. 120920, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.120920.
  • C. H. Hoang et al., “An experimental apparatus for two-phase cooling of high heat flux application using an impinging cold plate and dielectric coolant,” in 36th Annu. Semicond. Therm. Meas. Model. Manag. Symp. SEMI-THERM 2020 Proc, 2020, pp. 32–38. DOI: 10.23919/SEMI-THERM50369.2020.9142831.
  • A. Jahanbakhshi, A. A. Nadooshan, and M. Bayareh, “Multi-objective optimization of microchannel heatsink with wavy microtube by combining response surface method and genetic algorithm,” Eng. Anal. Bound. Elem., vol. 140, pp. 12–31, 2022. DOI: 10.1016/j.enganabound.2022.04.004.
  • S. Rostami, A. A. Nadooshan, A. Raisi, and M. Bayareh, “Numerical assessment of the multi-phase nanofluid flow inside a microchannel during the melting and solidification of PCM in the thermal management of a heatsink,” Eng. Anal. Bound. Elem., vol. 148, pp. 267–278, 2023. DOI: 10.1016/j.enganabound.2022.12.038.
  • M. Bayareh, “An overview of non-Newtonian nanofluid flow in macro- and micro-channels using two-phase schemes,” Eng. Anal. Bound. Elem., vol. 148, pp. 165–175, 2023. DOI: 10.1016/j.enganabound.2022.12.033.
  • D. Jing and L. He, “Numerical studies on the hydraulic and thermal performances of microchannels with different cross-sectional shapes,” Int. J. Heat Mass Transf., vol. 143, pp. 118604, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118604.
  • L. Shui, B. Huang, F. Gao, and H. Rui, “Experimental and numerical investigation on the flow and heat transfer characteristics in a tree-like branching microchannel,” J. Mech. Sci. Technol., vol. 32, no. 2, pp. 937–946, 2018. DOI: 10.1007/s12206-018-0144-y.
  • S. M. Hassani, M. Khoshvaght-Aliabadi, S. H. Mazloumi, S. Rehman, and A. Alimoradi, “Improving thermal performance of microchannels by combining rectangular pin with chamber,” Appl. Therm. Eng., vol. 186, pp. 116373, 2021. DOI: 10.1016/j.applthermaleng.2020.116373.
  • H. Xie, B. Yang, S. Zhang, and M. Song, “Research on the mechanism of heat transfer enhancement in microchannel heat sinks with micropin fins,” Int. J. Energy Res., vol. 44, no. 4, pp. 3049–3065, 2020. DOI: 10.1002/er.5135.
  • H. Tabkhi, A. Nayebzadeh, and Y. Peles, “Experimental and numerical local heat transfer study on micro pin fin with tip clearance,” Appl. Therm. Eng., vol. 179, pp. 115756, 2020. DOI: 10.1016/j.applthermaleng.2020.115756.
  • Y. K. Prajapati, “Influence of fin height on heat transfer and fluid flow characteristics of rectangular microchannel heat sink,” Int. J. Heat Mass Transf., vol. 137, pp. 1041–1052, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.04.012.
  • S. T. Kadam, R. Kumar, and R. Abiev, “Performance augmentation of single-phase heat transfer in open-type microchannel heat sink,” J. Thermophys. Heat Transf., vol. 33, no. 2, pp. 416–424, 2019. DOI: 10.2514/1.T5522.
  • M. Nawaz Khan, M. N. Karimi, M. A. Khan, M. Y. Siddiqui, and T. Rehmaan, “Effect of undercut slots on the overall performance of microchannel heatsink,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1259, no. 1, pp. 012009, 2022. DOI: 10.1088/1757-899X/1259/1/012009.
  • M. N. Khan and M. N. Karimi, “Analysis of heat transfer enhancement in microchannel by varying the height of pin fins at upstream and downstream region,” J. Process. Mech. Eng., vol. 234, no. 4, pp. 1–10, 2021. DOI: 10.1177/0954408921992975.
  • M. N. Khan, M. N. Karimi, and M. O. Qidwai, “Effect of circular perforated pin fin on heat transfer and fluid flow characteristics of rectangular microchannel heat sink,” Numer. Heat Transf. Part A Appl., vol. 83, no. 6, pp. 594–608, Aug. 2022. DOI: 10.1080/10407782.2022.2101809.
  • A. Al-Damook, N. Kapur, J. L. Summers, and H. M. Thompson, “An experimental and computational investigation of thermal air flows through perforated pin heat sinks,” Appl. Therm. Eng., vol. 89, pp. 365–376, Jul. 2015. DOI: 10.1016/j.applthermaleng.2015.06.036.
  • A. Al-Damook, N. Kapur, J. L. Summers, and H. M. Thompson, “Computational design and optimisation of pin fin heat sinks with rectangular perforations,” Appl. Therm. Eng., vol. 105, pp. 691–703, 2016. DOI: 10.1016/j.applthermaleng.2016.03.070.
  • A. S. Tijani and N. B. Jaffri, “Thermal analysis of perforated pin-fins heat sink under forced convection condition,” Procedia Manufac., vol. 24, pp. 290–298, 2018. DOI: 10.1016/j.promfg.2018.06.025.
  • A. Maji, D. Bhanja, P. K. Patowari, and B. Kundu, “Thermal analysis for heat transfer enhancement in perforated pin fins of various shapes with staggered arrays,” Heat Transf. Eng., vol. 40, no. 3-4, pp. 295–319, Feb. 2019. DOI: 10.1080/01457632.2018.1429047.
  • V. Choudhary, M. Kumar, and A. K. Patil, “Experimental investigation of enhanced performance of pin fin heat sink with wings,” Appl. Therm. Eng., vol. 155, pp. 546–562, Jun. 2019. DOI: 10.1016/j.applthermaleng.2019.03.139.
  • F. Z. Bakhti and M. Si-Ameur, “A comparison of mixed convective heat transfer performance of nanofluids cooled heat sink with circular perforated pin fin,” Appl. Therm. Eng., vol. 159, pp. 113819, Aug. 2019. DOI: 10.1016/j.applthermaleng.2019.113819.
  • S. S. Kavita, H. Dhanawade, H. S. Dhanawade, A. Kashikar, S. Matey, and M. Bhadane, “Thermal analysis of circular pinfin with rectangular slot at the center by forced convection,” Int. J. Mech. Ind. Eng., vol. 14, no. 11, pp. 451–459, 2020.
  • X. Wang, M. Chen, D. Tate, H. Rahimi, and S. Zhang, “Numerical investigation on hydraulic and thermal characteristics of micro latticed pin fin in the heat sink,” Int. J. Heat Mass Transf., vol. 149, pp. 119157, Mar. 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119157.
  • A. A. Mohamed and O. Younis, “Performance of drop shaped pin fin heat exchanger with four different fin dimensions,” JMES., vol. 14, no. 2, pp. 6934–6951, Jun. 2020. DOI: 10.15282/jmes.14.2.2020.31.0543.
  • D. Gupta, P. Saha, and S. Roy, “Computational analysis of perforation effect on the thermo-hydraulic performance of micro pin-fin heat sink,” Int. J. Therm. Sci., vol. 163, no. February, pp. 106857, 2021. DOI: 10.1016/j.ijthermalsci.2021.106857.
  • M. R. Haque, T. J. Hridi, and M. M. Haque, “CFD studies on thermal performance augmentation of heat sink using perforated twisted, and grooved pin fins,” Int. J. Therm. Sci., vol. 182, pp. 107832, 2022. DOI: 10.1016/j.ijthermalsci.2022.107832.
  • M. O. Qidwai and M. M. Hasan, “Effect of variation of cylindrical pin fins height on the overall performance of microchannel heat sink,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., vol. 0, no. 0, pp. 1–11, 2019. DOI: 10.1177/0954408918821777.
  • V. Yadav, K. Baghel, R. Kumar, and S. T. Kadam, “Numerical investigation of heat transfer in extended surface microchannels,” Int. J. Heat Mass Transf., vol. 93, pp. 612–622, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.10.023.
  • G. Xia, L. Chai, M. Zhou, and H. Wang, “Effects of structural parameters on fluid flow and heat transfer in a microchannel with aligned fan-shaped reentrant cavities,” Int. J. Therm. Sci., vol. 50, no. 3, pp. 411–419, 2011. DOI: 10.1016/j.ijthermalsci.2010.08.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.