Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 13
101
Views
1
CrossRef citations to date
0
Altmetric
Articles

MHD-driven chemically active and thermally radiative Prandtl hybrid nanofluid flow on stretching device with Ohmic heating, dissipation, and diffusion effects

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2165-2182 | Received 10 Nov 2022, Accepted 21 May 2023, Published online: 16 Jun 2023

References

  • S. U. Choi, “Nanofluids: from vision to reality through research,” J. Heat Transfer, vol. 131, no. 3, pp. 1–9, Mar. 2009. DOI: 10.1115/1.3056479.
  • M. Muneeshwaran, G. Srinivasan, P. Muthukumar and C.-C. Wang, “Role of hybrid-nanofluid in heat transfer enhancement–a review,” Int. Commun. Heat Mass Transfer, vol. 125, pp. 105341, Jun. 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105341.
  • S. Shaw, S. Samantaray, A. Misra, M. Nayak and O. Makinde, “Hydromagnetic flow and thermal interpretations of cross hybrid nanofluid influenced by linear, nonlinear and quadratic thermal radiations for any Prandtl number,” Int. Commun. Heat Mass Transfer, vol. 130, pp. 105816, Jan. 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105816.
  • W. Jamshed, R. Safdar, A. Brahmia, A. K. Alanazi, H. M. Abo-Dief and M. R. Eid, “Numerical simulations of environmental energy features in solar pump application by using hybrid nanofluid flow: prandtl-eyring case,” Ener. Environ., Advance online publication, Feb. 2022. DOI: 10.1177/0958305X211073806.
  • M. A. Qureshi, “Thermal capability and entropy optimization for prandtl-eyring hybrid nanofluid flow in solar aircraft implementation,” Alex. Eng. J., vol. 61, no. 7, pp. 5295–5307, Jul. 2022. DOI: 10.1016/j.aej.2021.10.051.
  • M. J. Khan, et al., “Numerical solution of catteno-christov heat flux model over stretching/shrinking hybrid nanofluid by new iterative method,” Case Stud. Ther. Eng., vol. 28, pp. 101673, Dec. 2021. DOI: 10.1016/j.csite.2021.101673.
  • P. Barnoon, “Numerical assessment of heat transfer and mixing quality of a hybrid nanofluid in a microchannel equipped with a dual mixer,” Int. J. Thermofluids, vol. 12, pp. 100111, Nov. 2021. DOI: 10.1016/j.ijft.2021.100111.
  • R. Zhang, N. A. Ahammad, C. S. Raj, S. M. Upadhya, N. A. Shah and S. J. Yook, “Quadratic and linear radiation impact on 3D convective hybrid nanofluid flow in a suspension of different temperature of waters: transpiration and fourier fluxes,” Int. Commun. Heat Mass Transfer, vol. 138, pp. 106418, Nov. 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106418.
  • S. Salawu, A. Obalalu and M. Shamshuddin, “Nonlinear solar thermal radiation efficiency and energy optimization for magnetized hybrid prandtl–eyring nanoliquid in aircraft,” Arab. J. Sci. Eng., vol. 48, no. 3, pp. 3061–3072, Jul. 2023. DOI: 10.1007/s13369-022-07080-1.
  • M. Jawad, Z. Khan, E. Bonyah and R. Jan, “Analysis of hybrid nanofluid stagnation point flow over a stretching surface with melting heat transfer,” Math. Problems Eng., vol. 2022, pp. 1–12, Feb. 2022. DOI: 10.1155/2022/9469164.
  • F. Ahmad, S. Abdal, H. Ayed, S. Hussain, S. Salim and A. O. Almatroud, “The improved thermal efficiency of maxwell hybrid nanofluid comprising of grapheme oxide plus silver/kerosene oil over stretching sheet,” Case Stud. Ther. Eng., vol. 27, pp. 101257, Oct. 2021. DOI: 10.1016/j.csite.2021.101257.
  • N. A. Zainal, R. Nazar, K. Naganthran and I. Pop, “Mhd flow and heat transfer of hybrid nanofluid over a permeable moving surface in the presence of thermal radiation,” HFF, vol. 31, no. 3, pp. 858–879, Jul. 2021. DOI: 10.1108/HFF-03-2020-0126.
  • F. Mabood, G. Ashwinkumar and N. Sandeep, “Simultaneous results for unsteady flow of mhd hybrid nanoliquid above a flat/slendering surface,” J. Therm. Anal. Calorim., vol. 146, no. 1, pp. 227–239, Oct. 2021. DOI: 10.1007/s10973-020-09943-x.
  • M. Shoaib, et al., “Numerical analysis of 3-d mhd hybrid nanofluid over a rotational disk in presence of thermal radiation with joule heating and viscous dissipation effects using lobatto iiia technique,” Alex. Eng. J., vol. 60, no. 4, pp. 3605–3619, Aug. 2021. DOI: 10.1016/j.aej.2021.02.015.
  • A. Abbasi, S. U. Khan, W. Farooq and M. I. Khan, “Optimized analysis and enhanced thermal efficiency of copper–aluminum oxide nanoparticles under the influence of joule heating and viscous dissipation,” Eur. Phys. J. Plus, vol. 136, no. 10, pp. 1026, Oct. 2021. DOI: 10.1140/epjp/s13360-021-02025-3.
  • M. K. Nayak, “MHD 3D flow and heat transfer analysis of nanofluid by shrinking surface inspired by thermal radiation and viscous dissipation,” Int. J. Mech. Sci., vol. 124–125, pp. 185–193, May 2017. DOI: 10.1016/j.ijmecsci.2017.03.014.
  • M. V. Krishna, N. A. Ahammad and A. J. Chamkha, “Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface,” Case Stud. Ther. Eng., vol. 27, pp. 101229, Oct. 2021. DOI: 10.1016/j.csite.2021.101229.
  • S. Akter, M. Ferdows and Z. Siri, “Similarity solution for induced magnetic field boundary layer flow of metallic nanofluids via convectively inclined stationary/moving flat plate: spectral relaxation computation,” ZAMM-J. Appl. Math. Mech./Zeitschrift Für Angewandte Mathematik Und Mechanik, vol. 102, no. 4, pp. e202100179, Apr. 2022. DOI: 10.1002/zamm.202100179.
  • I. Waini, A. Ishak and I. Pop, “Radiative and magnetohydrodynamic micropolar hybrid nanofluid flow over a shrinking sheet with joule heating and viscous dissipation effects,” Neural Comput. Applic., vol. 34, no. 5, pp. 3783–3794, Mar. 2022. DOI: 10.1007/s00521-021-06640-0.
  • M. Shamshuddin and P. Satya Narayana, “Combined effect of viscous dissipation and joule heating on mhd flow past a riga plate with cattaneo–christov heat flux,” Indian J. Phys., vol. 94, no. 9, pp. 1385–1394, Sep. 2020. DOI: 10.1007/s12648-019-01576-7.
  • A. B. Patil, N. S. Patil, V. S. Patil, P. P. Humane and G. R. Rajput, “Unsteady thermally radiative Prandtl fluid flow past a magnetized inclined porous stretching device with double-diffusion, viscous dissipation, and joule heating,” Proc. Inst. Mech. Engineers, E: J. Process Mech. Eng., vol. 237, no. 3, pp. 762–770, Jun. 2023. DOI: 10.1177/09544089221107295.
  • P. P. Humane, V. S. Patil and A. B. Patil, “Chemical reaction and thermal radiation effects on magnetohydrodynamics flow of casson–williamson nanofluid over a porous stretching surface,” Proc. Inst. Mech. Engineers, E: J. Process Mech. Eng., vol. 235, no. 6, pp. 2008–2018, Dec. 2021. DOI: 10.1177/09544089211025376.
  • N. S. Khashi’ie, N. S. Wahid, N. Md Arifin and I. Pop, “Mhd stagnation-point flow of hybrid nanofluid with convective heated shrinking disk, viscous dissipation and joule heating effects,” Neural Comput. Applic., vol. 34, no. 20, pp. 17601–17613, Jun. 2022. DOI: 10.1007/s00521-022-07371-6.
  • A. B. Patil, P. P. Humane, V. S. Patil and G. R. Rajput, “Mhd Prandtl nanofluid flow due to convectively heated stretching sheet below the control of chemical reaction with thermal radiation,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 4310–4322, Feb. 2022. DOI: 10.1080/01430750.2021.1888803.
  • W. Jamshed, et al., “The improved thermal efficiency of Prandtl–Eyring hybrid nanofluid via classical keller box technique,” Sci. Rep., vol. 11, no. 1, pp. 1–24, Dec. 2021. DOI: 10.1038/s41598-021-02756-4.
  • M. A. Qureshi, “A case study of mhd driven prandtl-eyring hybrid nanofluid flow over a stretching sheet with thermal jump conditions,” Case Stud. Ther. Eng., vol. 28, pp. 101581, Dec. 2021. DOI: 10.1016/j.csite.2021.101581.
  • S. A. A. Shah, N. A. Ahammad, E. M. T. E. Din, F. Gamaoun, A. U. Awan and B. Ali, “Bio-convection effects on prandtl hybrid nanofluid flow with chemical reaction and motile microorganism over a stretching sheet,” Nanomaterials, vol. 12, no. 13, pp. 2174, Jun. 2022. DOI: 10.3390/nano12132174.
  • R. H. Monfared, M. Niknejadi, D. Toghraie and P. Barnoon, “Numerical investigation of swirling flow and heat transfer of a nanofluid in a tube with helical ribs using a two-phase model,” J. Therm. Anal. Calorim., vol. 147, no. 4, pp. 3403–3416, Feb. 2022. DOI: 10.1007/s10973-021-10661-1.
  • F. Mabood, M. K. Nayak and A. J. Chamkha, “Heat transfer on the cross flow of micropolar fluids over a thin needle moving in a parallel stream influenced by binary chemical reaction and Arrhenius activation energy,” Eur. Phys. J. Plus, vol. 134, no. 9, pp. 427, Sep. 2019. DOI: 10.1140/epjp/i2019-12716-9.
  • M. K. Nayak, S. Shaw, O. D. Makinde and A. J. Chamkha, “Investigation of partial slip and viscous dissipation effects on the radiative tangent hyperbolic nanofluid flow past a vertical permeable Riga plate with internal heating: Bungiorno model,” J. Nanofluids, vol. 8, no. 1, pp. 51–62, Jan. 2019. DOI: 10.1166/jon.2019.1576.
  • N. A. Shah, J. D. Chung, N. A. Ahammad, D. Vieru and S. Younas, “Thermal analysis of unsteady convective flows over a vertical cylinder with time-dependent temperature using the generalized Atangana–Baleanu derivative,” Chinese J. Physics, vol. 77, pp. 1431–1449, Jun. 2022. DOI: 10.1016/j.cjph.2021.10.013.
  • G. Rasool, et al., “Hydrothermal and mass aspects of MHD non-Darcian convective flows of radiating thixotropic nanofluids nearby a horizontal stretchable surface: passive control strategy,” Case Stud. Thermal Eng., vol. 42, pp. 102654, Feb. 2023. DOI: 10.1016/j.csite.2022.102654.
  • Z. Abdelmalek, U. Nazir, M. Nawaz, J. Alebraheem and A. Elmoasry, “Double diffusion in carreau liquid suspended with hybrid nanoparticles in the presence of heat generation and chemical reaction,” Int. Commun. Heat Mass Transfer, vol. 119, pp. 104932, Dec. 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104932.
  • M. K. Nayak, S. Shaw, H. Waqas and T. Muhammad, “Numerical computation for entropy generation in darcy-forchheimer transport of hybrid nanofluids with cattaneo-christov double-diffusion,” HFF, vol. 32, no. 6, pp. 1861–1882, Aug. 2022. DOI: 10.1108/HFF-04-2021-0295.
  • N. A. Ahammad and M. V. Krishna, “Numerical investigation of chemical reaction, Soret and Dufour impacts on MHD free convective gyrating flow through a vertical porous channel,” Case Stud. Therm. Eng., vol. 28, pp. 101571, Dec. 2021. DOI: 10.1016/j.csite.2021.101571.
  • A. B. Patil, V. S. Patil, P. P. Humane, M. Shamshuddin and M. A. Jadhav, “Double diffusive time-dependent mhd prandtl nanofluid flow due to linear stretching sheet with convective boundary conditions,” Int. J. Model. Sim., vol. 43, no. 1, pp. 34–48, Feb. 2023. DOI: 10.1080/02286203.2022.2033499.
  • S. Elattar, et al., “Computational assessment of hybrid nanofluid flow with the influence of hall current and chemical reaction over a slender stretching surface,” Alex. Eng. J., vol. 61, no. 12, pp. 10319–10331, Dec. 2022. DOI: 10.1016/j.aej.2022.03.054.
  • N. Joshi, A. K. Pandey, H. Upreti and M. Kumar, “Mixed convection flow of magnetic hybrid nanofluid over a bidirectional porous surface with internal heat generation and a higher-order chemical reaction,” Heat Transfer, vol. 50, no. 4, pp. 3661–3682, Jun. 2021. DOI: 10.1002/htj.22046.
  • N. A. Zainal, R. Nazar, K. Naganthran and I. Pop, “Flow and heat transfer over a permeable moving wedge in a hybrid nanofluid with activation energy and binary chemical reaction,” HFF, vol. 32, no. 5, pp. 1686–1705, Aug. 2022. DOI: 10.1108/HFF-04-2021-0298.
  • M. K. Nayak, “Chemical reaction effect on MHD viscoelastic fluid over a stretching sheet through porous medium,” Meccanica, vol. 51, no. 8, pp. 1699–1711, Aug. 2016. DOI: 10.1007/s11012-015-0329-3.
  • M. K. Nayak, S. Shaw, O. D. Makinde and A. J. Chamkha, “Effects of homogenous–heterogeneous reactions on radiative NaCl-CNP nanofluid flow past a convectively heated vertical Riga plate,” J. Nanofluids, vol. 7, no. 4, pp. 657–667, Aug. 2018. DOI: 10.1166/jon.2018.1501.
  • M. V. Krishna, N. A. Ahamad and A. F. Aljohani, “Thermal radiation, chemical reaction, Hall and ion slip effects on MHD oscillatory rotating flow of micro-polar liquid,” Alex. Eng. J., vol. 60, no. 3, pp. 3467–3484, Jun. 2021. DOI: 10.1016/j.aej.2021.02.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.