Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 13
78
Views
3
CrossRef citations to date
0
Altmetric
Articles

Three-dimensional swirling flow of a ternary composite nanofluid induced by the torsional motion of a cylinder considering non-Fourier law

ORCID Icon, , , & ORCID Icon
Pages 2183-2196 | Received 06 Feb 2023, Accepted 21 May 2023, Published online: 16 Jun 2023

References

  • M. A. Sprague and P. D. Weidman, “Three-dimensional flow induced by the torsional motion of a cylinder,” Fluid Dyn. Res., vol. 43, no. 1, pp. 15501, Nov. 2011. DOI: 10.1088/0169-5983/43/1/015501.
  • T. Fang and S. Yao, “Viscous swirling flow over a stretching cylinder,” Chin. Phys. Lett., vol. 28, no. 11, pp. 114702, Nov. 2011. DOI: 10.1088/0256-307X/28/11/114702.
  • M. F. Javed, et al., “Axisymmetric flow of Casson fluid by a swirling cylinder,” Results Phys., vol. 9, pp. 1250–1255, 2018. Jun. DOI: 10.1016/j.rinp.2018.04.015.
  • M. Khan, A. Ahmed and J. Ahmed, “Boundary layer flow of Maxwell fluid due to torsional motion of cylinder: modeling and simulation,” Appl. Math. Mech.-Engl. Ed., vol. 41, no. 4, pp. 667–680, 2020. Apr. DOI: 10.1007/s10483-020-2601-5.
  • B. Mahfoud, “Enhancement heat transfer of swirling nanofluid using an electrical conducting lid,” J. Thermophy. Heat Transfer, vol. 37, no. 1, pp. 263–271, 2023. Jan. DOI: 10.2514/1.T6550.
  • B. Mahfoud, “Simulation of magnetic field effect on heat transfer enhancement of swirling nanofluid,” Int. J. Comp. Mat. Sci. Eng., vol. 11, no. 04, pp. 2250007, 2022. Dec. DOI: 10.1142/S2047684122500075.
  • H. Benhacine, B. Mahfoud and M. Salmi, “Stability effect of an axial magnetic field on fluid flow bifurcation between coaxial cylinders,” Int. J. Comp. Mat. Sci. Eng., vol. 10, no. 04, pp. 2150023, 2021. Dec. DOI: 10.1142/S2047684121500238.
  • B. Mahfoud, H. Benhacine, A. Laouari and A. Bendjaghlouli, “Magnetohydrodynamic effect on flow structures between coaxial cylinders heated from below,” J. Thermophys. Heat Transfer, vol. 34, no. 2, pp. 265–274, 2020. DOI: 10.2514/1.T5805.
  • B. Mahfoud and R. Bessaïh, “Magnetohydrodynamic counter-rotating flow in a cylindrical cavity,” Int. J. Heat Mass Transfer, vol. 93, pp. 175–185, 2016. Feb. DOI: 10.1016/j.ijheatmasstransfer.2015.10.009.
  • S. Kavya, V. Nagendramma, N. A. Ahammad, S. Ahmad, C. S. K. Raju and N. A. Shah, “Magnetic-hybrid nanoparticles with stretching/shrinking cylinder in a suspension of MoS4 and copper nanoparticles,” Int. Commun. Heat Mass Transfer, vol. 136, pp. 106150, 2022. Jul. DOI: 10.1016/j.icheatmasstransfer.2022.106150.
  • F. Wang, M. I. Asjad, M. Zahid, A. Iqbal, H. Ahmad and M. D. Alsulami, “Unsteady thermal transport flow of Casson nanofluids with generalized Mittag–Leffler kernel of Prabhakar’s type,” J. Materials Res. Technol., vol. 14, pp. 1292–1300, 2021. Sep. DOI: 10.1016/j.jmrt.2021.07.029.
  • R. S. Varun Kumar, R. J. Punith Gowda, R. Naveen Kumar, M. Radhika and B. C. Prasannakumara, “Two-phase flow of dusty fluid with suspended hybrid nanoparticles over a stretching cylinder with modified Fourier heat flux,” SN Appl. Sci., vol. 3, no. 3, pp. 384, 2021. Feb. DOI: 10.1007/s42452-021-04364-3.
  • B. C. Prasannakumara, “Numerical simulation of heat transport in Maxwell nanofluid flow over a stretching sheet considering magnetic dipole effect,” Partial Differ. Eq. Appl. Math., vol. 4, pp. 100064, 2021. Dec. DOI: 10.1016/j.padiff.2021.100064.
  • R. J. Punith Gowda, et al., “Computational modelling of nanofluid flow over a curved stretching sheet using Koo–Kleinstreuer and Li (KKL) correlation and modified Fourier heat flux model,” Chaos Solit. Fract., vol. 145, pp. 110774, 2021. Apr. DOI: 10.1016/j.chaos.2021.110774.
  • R. Naveen Kumar, et al., “Cattaneo–Christov heat flux model for nanofluid flow over a curved stretching sheet: an application of Stefan blowing,” Heat Trans., vol. 51, no. 6, pp. 4977–4991, 2022. DOI: 10.1002/htj.22532.
  • N. Anjum, W. A. Khan, A. Hobiny, M. Azam, M. Waqas and M. Irfan, “Numerical analysis for thermal performance of modified Eyring Powell nanofluid flow subject to activation energy and bioconvection dynamic,” Case Stud. Thermal Eng., vol. 39, pp. 102427, 2022. Nov. DOI: 10.1016/j.csite.2022.102427.
  • M. Tabrez and W. Azeem Khan, “Exploring physical aspects of viscous dissipation and magnetic dipole for ferromagnetic polymer nanofluid flow,” Waves Random Complex Media, vol. 0, no. 0, pp. 1–20, 2022. Oct. DOI: 10.1080/17455030.2022.2135794.
  • M. Waqas, W. A. Khan, A. A. Pasha, N. Islam and M. M. Rahman, “Dynamics of bioconvective Casson nanoliquid from a moving surface capturing gyrotactic microorganisms, magnetohydrodynamics and stratifications,” Thermal Sci. Eng. Progress, vol. 36, pp. 101492, 2022. Dec. DOI: 10.1016/j.tsep.2022.101492.
  • Z. Hussain and W. Azeem Khan, “Impact of thermal-solutal stratifications and activation energy aspects on time-dependent polymer nanoliquid,” Waves Random Complex Media, vol. 0, no. 0, pp. 1–11, 2022. Sep. DOI: 10.1080/17455030.2022.2128229.
  • W. A. Khan, Z. Arshad, A. Hobiny, S. Saleem, A. Al-Zubaidi and M. Irfan, “Impact of magnetized radiative flow of sutterby nanofluid subjected to convectively heated wedge,” Int. J. Mod. Phys. B, vol. 36, no. 16, pp. 2250079, 2022. Jun. DOI: 10.1142/S0217979222500795.
  • W. A. Khan, et al., “Impact of nanoparticles and radiation phenomenon on viscoelastic fluid,” Int. J. Mod. Phys. B, vol. 36, no. 05, pp. 2250049, 2022. Feb. DOI: 10.1142/S0217979222500497.
  • W. A. Khan, N. Anjum, M. Waqas, S. Z. Abbas, M. Irfan and T. Muhammad, “Impact of stratification phenomena on a nonlinear radiative flow of sutterby nanofluid,” J. Materials Res. Technol., vol. 15, pp. 306–314, 2021. Nov. DOI: 10.1016/j.jmrt.2021.08.011.
  • W. A. Khan, H. Sun, M. Shahzad, M. Ali, F. Sultan and M. Irfan, “Importance of heat generation in chemically reactive flow subjected to convectively heated surface,” Indian J. Phys., vol. 95, no. 1, pp. 89–97, 2021. Jan. DOI: 10.1007/s12648-019-01678-2.
  • W. A. Khan, M. Ali, M. Irfan, M. Khan, M. Shahzad and F. Sultan, “A rheological analysis of nanofluid subjected to melting heat transport characteristics,” Appl. Nanosci., vol. 10, no. 8, pp. 3161–3170, 2020. Aug. DOI: 10.1007/s13204-019-01067-5.
  • W. A. Khan, M. Ali, M. Shahzad, F. Sultan, M. Irfan and Z. Asghar, “A note on activation energy and magnetic dipole aspects for cross nanofluid subjected to cylindrical surface,” Appl. Nanosci., vol. 10, no. 8, pp. 3235–3244, 2020. Aug. DOI: 10.1007/s13204-019-01220-0.
  • J. K. Madhukesh, et al., “Analysis of buoyancy assisting and opposing flows of colloidal mixture of titanium oxide, silver, and aluminium oxide nanoparticles with water due to exponentially stretchable surface,” Arabian J. Chem., vol. 16, no. 4, pp. 104550, 2023. Apr. DOI: 10.1016/j.arabjc.2023.104550.
  • M. Nagapavani, et al., “Features of the exponential form of internal heat generation, Cattaneo–Christov heat theory on water-based graphene–CNT–titanium ternary hybrid nanofluid flow,” Heat Trans., vol. 52, no. 1, pp. 144–161, 2023. DOI: 10.1002/htj.22689.
  • U. Khan, et al., “Time-dependent flow of water-based ternary hybrid nanoparticles over a radially contracting/expanding and rotating permeable stretching sphere,” Thermal Sci. Eng. Progress, vol. 36, pp. 101521, 2022. Dec. DOI: 10.1016/j.tsep.2022.101521.
  • R. N. Kumar, F. Gamaoun, A. Abdulrahman, J. S. Chohan and R. J. P. Gowda, “Heat transfer analysis in three-dimensional unsteady magnetic fluid flow of water-based ternary hybrid nanofluid conveying three various shaped nanoparticles: a comparative study,” Int. J. Mod. Phys. B, vol. 36, no. 25, pp. 2250170, 2022. Oct. DOI: 10.1142/S0217979222501703.
  • S. Saleem, I. L. Animasaun, S.-J. Yook, Q. M. Al-Mdallal, N. A. Shah and M. Faisal, “Insight into the motion of water conveying three kinds of nanoparticles shapes on a horizontal surface: significance of thermo-migration and Brownian motion,” Surf. Interfaces, vol. 30, pp. 101854, 2022. Jun. DOI: 10.1016/j.surfin.2022.101854.
  • V. Leela, B. C. Prasannakumara, B. Shilpa and R. Gangadhara Reddy, “Computational analysis of ohmic and viscous dissipation effects on MHD mixed convection flow in a vertical channel with linearly varying wall temperatures,” Proc. Institution Mech. Engineers, Part E: J. Process. Mech. Eng., pp. 95440892210806, 2022. Feb. DOI: 10.1177/09544089221080669.
  • B. Shilpa, V. Leela, B. C. Prasannakumara and P. Nagabhushana, “Soret and Dufour effects on MHD double-diffusive mixed convective heat and mass transfer of couple stress fluid in a channel formed by electrically conducting and non-conducting walls,” Waves Random Complex Media, vol. 0, no. 0, pp. 1–22, 2022. Sep. DOI: 10.1080/17455030.2022.2119491.
  • B. Shilpa and V. Leela, “Galerkin finite element analysis of heat and mass transfer of Jeffrey, Maxwell and Oldroyd—B nanofluids in a vertical annulus with induced magnetic field and non-uniform heat source/sink,” Int. J. Ambient Energy, vol. 0, pp. 1–17, 2023. Mar. DOI: 10.1080/01430750.2023.2196988.
  • J. Rekha, et al., “Solute transport exponentially varies with time in an unsaturated zone using finite element and finite difference method,” Int. J. Mod. Phys. B, vol. 37, no. 09, pp. 2350089, 2023. Apr DOI: 10.1142/S0217979223500893.
  • B. Ali, X. Yu, M. T. Sadiq, A. U. Rehman and L. Ali, “A finite element simulation of the active and passive controls of the MHD effect on an axisymmetric nanofluid flow with thermo-diffusion over a radially stretched sheet,” Processes, vol. 8, no. 2, pp. 207, 2020. Feb. DOI: 10.3390/pr8020207.
  • G. Swapna, L. Kumar, P. Rana and B. Singh, “Finite element modeling of a double-diffusive mixed convection flow of a chemically-reacting magneto-micropolar fluid with convective boundary condition,” J. Taiwan Inst. Chem. Eng., vol. 47, pp. 18–27, 2015. Feb. DOI: 10.1016/j.jtice.2014.10.005.
  • D. Gupta, L. Kumar, O. A. Beg and B. Singh, “Finite-Element Analysis of Transient Heat and Mass Transfer In Microstructural Boundary Layer Flow From A Porous Stretching Sheet,” Comput. Therm. Sci. Int. J., vol. 6, no. 2, pp. 155–169, 2014. DOI: 10.1615/ComputThermalScien.2014008401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.