Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 13
51
Views
1
CrossRef citations to date
0
Altmetric
Articles

Multidiffusive nanofluid flow over a sphere with time-reliant nonlinear convective regime: Impact of activation energy

& ORCID Icon
Pages 2197-2219 | Received 20 Mar 2023, Accepted 21 May 2023, Published online: 16 Jun 2023

References

  • S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” presented at the Proc. Int. Mech. Eng. Congr. Exposition ASME, San Francisco, CA, USA, vol. 231, 1995, pp. 99–105.
  • J. Buongiorno, “Convective transport in nanofluids,” J. Heat Transf., vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • M. Ferdows and F. Alzahrani, “Numerical study of gyrotactic bioconvection in stretching flow of a variable viscosity nanofluid with buoyancy and power-law wall effects,” Waves Random Complex Media, 2023. DOI: 10.1080/17455030.2022.2162152.
  • P. S. Reddy and P. Sreedevi, “MHD boundary layer heat and mass transfer flow of nanofluid through porous media over the inclined plate with chemical reaction,” MMMS., vol. 17, no. 2, pp. 317–336, 2020. DOI: 10.1108/MMMS-03-2020-0044.
  • Z. Liu et al., “Numerical bio-convective assessment for rate type nanofluid influenced by Nield thermal constraints and distinct slip features,” Case Stud. Therm. Eng., vol. 44, pp. 102821, 2023. DOI: 10.1016/j.csite.2023.102821.
  • A. R. Bestman, “Natural convection boundary layer with suction and mass transfer in a porous medium,” Int. J. Energy Res., vol. 14, no. 4, pp. 389–396, 1990. DOI: 10.1002/er.4440140403.
  • M. Dhlamini, P. K. Kameswaran, P. Sibanda, S. Motsa, and H. Mondal, “Activation energy and binary chemical reaction effects in mixed convective nanofluid flow with convective boundary conditions,” J. Comput. Des. Eng., vol. 6, no. 2, pp. 149–158, 2019. DOI: 10.1016/j.jcde.2018.07.002.
  • M. Ali, M. Shahzad, F. Sultan, W. A. Khan, and S. Rashid, “Exploring the features of stratification phenomena for the 3D flow of Cross nanofluid considering activation energy,” Int. Commun. Heat Mass Transf., vol. 116, pp. 104674, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104674.
  • Y. M. Chu et al., “Double diffusion effect on the bio-convective magnetized flow of tangent hyperbolic liquid by a stretched nano-material with Arrhenius Catalysts,” Case Stud. Therm. Eng., vol. 44, pp. 102838, 2023. DOI: 10.1016/j.csite.2023.102838.
  • C. Ram Reddy and P. Naveen, “Analysis of activation energy in the quadratic convective flow of a micropolar fluid with chemical reaction and suction/injection effects,” MMMS., vol. 16, no. 1, pp. 169–190, 2019. DOI: 10.1108/MMMS-12-2018-0217.
  • M. I. Khan et al., “Entropy generation optimization and activation energy in nonlinear mixed convection flow of a tangent hyperbolic nanofluid,” Eur. Phys. J. Plus, vol. 133, no. 8, pp. 329, 2018.
  • M. I. Khan, M. W. A. Khan, A. Alsaedi, T. Hayat, and M. I. Khan, “Entropy generation optimization in flow of non-Newtonian nanomaterial with binary chemical reaction and Arrhenius activation energy,” Phys. A, vol. 538, pp. 122806, 2020. DOI: 10.1016/j.physa.2019.122806.
  • Z. H. Khan, W. A. Khan, J. Tang, and M. A. Sheremet, “Entropy generation analysis of triple diffusive flow past a horizontal plate in porous medium,” Chem. Eng. Sci., vol. 228, pp. 115980, 2020. DOI: 10.1016/j.ces.2020.115980.
  • S. U. Mamatha et al., “Multi-linear regression of triple diffusive convectively heated boundary layer flow with suction and injection: Lie group transformations,” Int. J. Mod. Phys. B, vol. 37, no. 01, pp. 2350007, 2023. DOI: 10.1142/S0217979223500078.
  • U. Arif et al., “Triple diffusion with heat transfer under different effects on magnetized hyperbolic tangent nanofluid flow,” Proc. Inst. Mech. Eng. E, 2022. DOI: 10.1177/09544089221079139.
  • P. M. Patil, M. Roy, S. Roy, and E. Momoniat, “Triple diffusive mixed convection flow along a vertically moving surface,” Int. J. Heat Mass Transf., vol. 117, pp. 287–295, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.106.
  • P. M. Patil, I. Pop, and S. Roy, “Unsteady heat and mass transfer over a vertical stretching sheet in a parallel free stream with variable wall temperature and concentration,” Numer. Methods Partial Differ. Equ., vol. 28, no. 3, pp. 926–941, 2012. DOI: 10.1002/num.20665.
  • S. Li, M. I. Khan, F. Alzahrani, and S. M. Eldin, “Heat and mass transport analysis in radiative time dependent flow in the presence of Ohmic heating and chemical reaction, viscous dissipation: An entropy modeling,” Case Stud. Therm. Eng., vol. 42, pp. 102722, 2023. DOI: 10.1016/j.csite.2023.102722.
  • P. M. Patil and S. Roy, “Unsteady mixed convection flow from a moving vertical plate in a parallel free stream: Influence of heat generation or absorption,” Int. J. Heat Mass Transf., vol. 53, no. 2122, pp. 4749–4756, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.06.017.
  • V. Rajesh, M. Srilatha, and M. A. Sheremet, “Effects of temperature oscillation on unsteady MHD hybrid nanofluid motion over a semi-infinite moving vertical sheet,” Heat Transf., vol. 51, no. 1, pp. 818–840, 2022. DOI: 10.1002/htj.22331.
  • P. M. Patil, S. Roy, and I. Pop, “Chemical reaction effects on unsteady mixed convection boundary layer flow past a permeable slender vertical cylinder due to a nonlinearly stretching velocity,” Chem. Eng. Commun., vol. 200, no. 3, pp. 398–417, 2013. DOI: 10.1080/00986445.2012.712578.
  • S. Li et al., “Effects of activation energy and chemical reaction on unsteady MHD dissipative Darcy–Forchheimer squeezed flow of Casson fluid over horizontal channel,” Sci. Rep., vol. 13, no. 1, pp. 2666, 2023. DOI: 10.1038/s41598-023-29702-w.
  • P. M. Patil, S. Roy, and I. Pop, “Unsteady mixed convection flow over a vertical stretching sheet in a parallel free stream with variable wall temperature,” Int. J. Heat Mass Transf., vol. 53, no. 2122, pp. 4741–4748, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.06.018.
  • A. Bejan, “A study of entropy generation in fundamental convective heat transfer,” J. Heat Transf., vol. 101, no. 4, pp. 718–725, 1979. DOI: 10.1115/1.3451063.
  • R. Kronig and J. Bruijsten, “On the theory of the heat and mass transfer from a sphere in a flowing medium at low values of Reynolds’ number,” Appl. Sci. Res., vol. 2, no. 1, pp. 439–446, 1951. DOI: 10.1007/BF00411999.
  • T. S. Chen and A. Mucoglu, “Analysis of mixed forced and free convection about a sphere,” Int. J. Heat Mass Transf., vol. 20, no. 8, pp. 867–875, 1977. DOI: 10.1016/0017-9310(77)90116-8.
  • A. S. Jenifer, P. Saikrishnan, and R. W. Lewis, “Unsteady MHD mixed convection flow of water over a sphere with mass transfer,” J. Appl. Comput. Mech., vol. 7, no. 2, pp. 935–943, 2021.
  • S. Roy, P. Saikrishnan, and B. D. Pandey, “Influence of double slot suction (injection) into water boundary layer flows over sphere,” Int. Commun. Heat Mass Transf., vol. 36, no. 7, pp. 646–650, 2009. DOI: 10.1016/j.icheatmasstransfer.2009.04.007.
  • J. Rajakumar, P. Saikrishnan, and A. J. Chamkha, “Non-uniform mass transfer in MHD mixed convection flow of water over a sphere with variable viscosity and Prandtl number,” HFF., vol. 26, no. 7, pp. 2235–2251, 2016. DOI: 10.1108/HFF-05-2015-0189.
  • N. C. Roy and M. A. Hossain, “Unsteady magnetohydrodynamic mixed convection flow of micropolar fluid past a permeable sphere,” J. Thermophys. Heat Transf., vol. 31, no. 3, pp. 686–699, 2017. DOI: 10.2514/1.T5038.
  • M. K. A. Mohamed, M. Z. Salleh, A. Ishak, and R. Nazar, “Viscous dissipation effect on the mixed convection boundary layer flow towards solid sphere,” Trans. Sci. Technol., vol. 3, no. 1–2, pp. 59–67, 2016.
  • R. Nazar, N. Amin, and I. Pop, “Mixed convection boundary layer flow about an isothermal sphere in a micropolar fluid,” Int. J. Therm. Sci., vol. 42, no. 3, pp. 283–293, 2003. DOI: 10.1016/S1290-0729(02)00027-3.
  • D. D. Gray and A. Giorgini, “The validity of Boussinesq approximation for liquids and gases,” Int. J. Heat Mass Transf., vol. 19, no. 5, pp. 545–551, 1976. DOI: 10.1016/0017-9310(76)90168-X.
  • H. Schlichting and K. Gersten, Boundary Layer Theory. New York, NY: Springer, 2000,
  • P. M. Patil and M. Kulkarni, “Nonlinear mixed convective nanofluid flow along moving vertical rough plate,” Rev. Mex. Fís., vol. 66, no. 2 MarApr, pp. 153–161, 2020. DOI: 10.31349/RevMexFis.66.153.
  • S. Li et al., “Bioconvection effect in the Carreau nanofluid with Cattaneo–Christov heat flux using stagnation point flow in the entropy generation: Micromachines level study,” Open Phys., vol. 21, pp. 2023, 20220228.
  • P. M. Patil, H. F. Shankar, and M. A. Sheremet, “Mixed convection of silica–molybdenum disulphide/water hybrid nanoliquid over a rough sphere,” Symmetry, vol. 13, no. 2, pp. 236, 2021. DOI: 10.3390/sym13020236.
  • R. J. Radbill and A. G. McCue, Quasilinearization and Nonlinear Problems in Fluid and Orbital Mechanics. New York, NY: Elsevier Publishing Co., 1970.
  • P. M. Patil, S. H. Doddagoudar, and P. S. Hiremath, “Impacts of surface roughness on mixed convection nanofluid flow with liquid hydrogen/nitrogen diffusion,” HFF., vol. 29, no. 6, pp. 2146–2174, 2019. DOI: 10.1108/HFF-11-2018-0703.
  • R. E. Bellman and R. E. Kalaba, Quasilinearization and Nonlinear Boundary Value Problems. New York, NY: Elsevier Publishing Co., 1965.
  • P. M. Patil, S. Roy, and E. Momoniat, “Thermal diffusion and diffusion-thermo effects on mixed convection from an exponentially impermeable stretching surface,” Int. J. Heat Mass Transf., vol. 100, pp. 482–489, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.04.054.
  • K. Inouye and A. Tate, “Finite difference version of quasilinearization applied to boundary layer equations,” AIAA J., vol. 12, no. 4, pp. 558–560, 1974. DOI: 10.2514/3.49286.
  • P. M. Patil, “Effects of surface mass transfer on steady mixed convection flow from vertical stretching sheet with variable wall temperature and concentration,” Int. J. Numer. Method H, vol. 22, no. 3, pp. 287–305, 2012. DOI: 10.1108/09615531211208015.
  • P. M. Patil, S. Roy, and I. Pop, “Flow and heat transfer over a moving vertical plate in a parallel free stream: Role of internal heat generation or absorption,” Chem. Eng. Commun., vol. 199, no. 5, pp. 658–672, 2012. DOI: 10.1080/00986445.2011.614978.
  • R. S. Varga, Matrix Iterative Analysis. USA: Prentice-Hall, 2000, pp. 219–223.
  • C. A. Scribd, “Mass diffusivity data”. Available: https://www.scribd.com/doc/58782633/MassDiffusivity-Data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.