Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 14
157
Views
2
CrossRef citations to date
0
Altmetric
Articles

Numerical analysis of conjugate convection heat transfer in an open cavity with different phase change materials surrounded by plexiglass

ORCID Icon, , &
Pages 2221-2240 | Received 03 Jan 2023, Accepted 21 May 2023, Published online: 23 Jun 2023

References

  • X. Jin, M. A. Medina, and X. Zhang, “Numerical analysis for the optimal location of a thin PCM layer in frame walls,” Appl. Therm. Eng., vol. 103, pp. 1057–1063, 2016. DOI: 10.1016/j.applthermaleng.2016.04.056.
  • I. Jmal and M. Baccar, “Numerical study of PCM solidification in a finned tube thermal storage including natural convection,” Appl. Therm. Eng., vol. 84, pp. 320–330, 2015. DOI: 10.1016/j.applthermaleng.2015.03.065.
  • B. Pandey, R. Banerjee, and A. Sharma, “Coupled EnergyPlus and CFD analysis of PCM for thermal management of buildings,” Energy Build., vol. 231, pp. 110598, 2021. DOI: 10.1016/j.enbuild.2020.110598.
  • M. S. Mahdi, H. B. Mahood, J. M. Mahdi, A. A. Khadom, and A. N. Campbell, “Improved PCM melting in a thermal energy storage system of double-pipe helical-coil tube,” Energy Convers. Manag., vol. 203, pp. 112238, 2020. DOI: 10.1016/j.enconman.2019.112238.
  • R. Fan, N. Zheng, and Z. Sun, “Evaluation of fin intensified phase change material systems for thermal management of Li-ion battery modules,” Int. J. Heat Mass Transf., vol. 166, pp. 120753, 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120753.
  • M. Sheikholeslami, R. Ul Haq, A. Shafee, and Z. Li, “Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins,” Int. J. Heat Mass Transf., vol. 130, pp. 1322–1342, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.11.020.
  • K. Ghachem et al., “Impacts of rotating surface and area expansion during nanofluid convection on phase change dynamics for PCM packed bed installed cylinder,” Alex. Eng. J., vol. 61, no. 6, pp. 4159–4173, Jun. 2022. DOI: 10.1016/j.aej.2021.09.034.
  • A. Castell et al., “Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins,” Appl. Therm. Eng., vol. 28, no. 13, pp. 1676–1686, Sept. 2008. DOI: 10.1016/j.applthermaleng.2007.11.004.
  • H. M. Sadeghi, M. Babayan, and A. Chamkha, “Investigation of using multi-layer PCMs in the tubular heat exchanger with periodic heat transfer boundary condition,” Int. J. Heat Mass Transf., vol. 147, pp. 118970, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.118970.
  • N. Hu, L. W. Fan, and Z. Q. Zhu, “Can the numerical simulations of melting in a differentially-heated rectangular cavity be rationally reduced to 2D? A comparative study between 2D and 3D simulation results,” Int. J. Heat Mass Transf., vol. 166, pp. 120751, 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120751.
  • M. Ghalambaz, A. J. Chamkha, and D. Wen, “Natural convective flow and heat transfer of nano-encapsulated phase change materials (NEPCMs) in a cavity,” Int. J. Heat Mass Transf., vol. 138, pp. 738–749, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.04.037.
  • N. Hajighafoori Boukani, A. Dadvand, and A. J. Chamkha, “Melting of a nano-enhanced phase change material (NePCM) in partially-filled horizontal elliptical capsules with different aspect ratios,” Int. J. Mech. Sci., vol. 149, pp. 164–177, Jun. 2018. DOI: 10.1016/j.ijmecsci.2018.09.056.
  • M. Sheikholeslami, “Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM,” J. Taiwan Inst. Chem. Eng., vol. 86, pp. 25–41, 2018. DOI: 10.1016/j.jtice.2018.03.013.
  • P. Ding and Z. Liu, “Numerical investigation of natural convection enhancement in latent heat energy storage units with punched-fin and slit-fin,” Int. J. Therm. Sci., vol. 163, pp. 106834, 2021. DOI: 10.1016/j.ijthermalsci.2021.106834.
  • C. Vélez, M. Khayet, and J. M. Ortiz De Zárate, “Temperature-dependent thermal properties of solid/liquid phase change even-numbered n-alkanes: n-Hexadecane, n-octadecane and n-eicosane,” Appl. Energy, vol. 143, pp. 383–394, 2015. DOI: 10.1016/j.apenergy.2015.01.054.
  • Y. Pahamli, M. J. Hosseini, A. A. Ranjbar, and R. Bahrampoury, “Analysis of the effect of eccentricity and operational parameters in PCM-filled single-pass shell and tube heat exchangers,” Renew. Energy, vol. 97, pp. 344–357, 2016. DOI: 10.1016/j.renene.2016.05.090.
  • C. Vélez, J. M. Ortiz de Zárate, and M. Khayet, “Thermal properties of n-pentadecane, n-heptadecane and n-nonadecane in the solid/liquid phase change region,” Int. J. Therm. Sci., vol. 94, pp. 139–146, 2015. DOI: 10.1016/j.ijthermalsci.2015.03.001.
  • A. Hasan, S. J. McCormack, M. J. Huang, and B. Norton, “Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics,” Sol. Energy, vol. 84, no. 9, pp. 1601–1612, 2010. DOI: 10.1016/j.solener.2010.06.010.
  • G. Asefi, A. Habibollahzade, T. Ma, E. Houshfar, and R. Wang, “Thermal management of building-integrated photovoltaic/thermal systems: A comprehensive review,” Sol. Energy, vol. 216, pp. 188–210, 2021. DOI: 10.1016/j.solener.2021.01.005.
  • M. M. Sorour, M. A. Hassab, M. M. Zaytoun, and M. A. Alnakeeb, “The effect of inclination angle on the performance characteristic of a double-pipe latent heat storage unit,” J. Energy Storage, vol. 34, pp. 102202, Feb. 2021. DOI: 10.1016/j.est.2020.102202.
  • M. Longeon, A. Soupart, J. F. Fourmigué, A. Bruch, and P. Marty, “Experimental and numerical study of annular PCM storage in the presence of natural convection,” Appl. Energy, vol. 112, pp. 175–184, Dec. 2013. DOI: 10.1016/j.apenergy.2013.06.007.
  • K. Kant, A. Shukla, and A. Sharma, “Performance evaluation of fatty acids as phase change material for thermal energy storage,” J. Energy Storage, vol. 6, pp. 153–162, May 2016. DOI: 10.1016/j.est.2016.04.002.
  • W. B. Ye, “Melting process in a rectangular thermal storage cavity heated from vertical walls,” J. Therm. Anal. Calorim., vol. 123, no. 1, pp. 873–880, Jan. 2016. DOI: 10.1007/s10973-015-4977-2.
  • F. Selimefendigil, H. F. Oztop, and A. J. Chamkha, “Natural convection in a CuO–water nanofluid filled cavity under the effect of an inclined magnetic field and phase change material (PCM) attached to its vertical wall,” J. Therm. Anal. Calorim., vol. 135, no. 2, pp. 1577–1594, Jan. 2019. DOI: 10.1007/s10973-018-7714-9.
  • M. J. Huang, P. C. Eames, and B. Norton, “Comparison of a small-scale 3D PCM thermal control model with a validated 2D PCM thermal control model,” Sol. Energy Mater. Sol. Cells, vol. 90, no. 13, pp. 1961–1972, Aug. 2006. DOI: 10.1016/j.solmat.2006.02.001.
  • T. H. Ruvo, S. Saha, S. Mojumder, and S. Saha, “Mixed convection in an open T-shaped cavity utilizing the effect of different inflow conditions with Al2O3-water nanofluid flow,” Res. Eng., vol. 17, pp. 100862, 2023. DOI: 10.1016/j.rineng.2022.100862.
  • A. T. Franco et al., “The effects of discrete conductive blocks on the natural convection in side-heated open cavities,” Appl. Therm. Eng., vol. 219, pp. 119613, 2023. DOI: 10.1016/j.applthermaleng.2022.119613.
  • M. Abu Taher, S. Siddiqa, M. Kamrujjaman, and M. M. Molla, “Free convection of temperature-dependent thermal conductivity based ethylene glycol-Al2O3 nanofluid in an open cavity with wall heat flux,” Int. Commun. Heat Mass Transf., vol. 138, pp. 106379, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106379.
  • Z. Haddad, F. Iachachene, and H. F. Oztop, “Melting characteristics of organic phase change material in a wavy trapezoidal cavity,” J. Mol. Liq., vol. 332, pp. 112132, Jun. 2021. DOI: 10.1016/j.molliq.2019.112132.
  • Z. Haddad, F. Iachachene, F. Zidouni, and H. F. Oztop, “Magnetic field effects on melting and solidification of PCMs in an isosceles triangular cavity,” J. Therm. Anal. Calorim., vol. 147, no. 7, pp. 4697–4709, Apr. 2022. DOI: 10.1007/s10973-021-10857-5.
  • Y. Feng, H. Li, L. Li, and F. Zhan, “Investigation of the effect of magnetic field on melting of solid gallium in a bottom-heated rectangular cavity using the lattice Boltzmann method,” Numer. Heat Transf. Part A Appl., vol. 69, no. 11, pp. 1263–1279, Jun. 2016. DOI: 10.1080/10407782.2015.1127732.
  • A. Abdi, V. Martin, and J. N. W. Chiu, “Numerical investigation of melting in a cavity with vertically oriented fins,” Appl. Energy, vol. 235, pp. 1027–1040, Feb. 2019. DOI: 10.1016/j.apenergy.2018.11.025.
  • F. Iachachene, Z. Haddad, H. F. Oztop, and E. Abu-Nada, “Melting of phase change materials in a trapezoidal cavity: Orientation and nanoparticles effects,” J. Mol. Liq., vol. 292, pp. 110592, Oct. 2019. DOI: 10.1016/j.molliq.2019.03.051.
  • Y. L. Chan and C. L. Tien, “A numerical study of two-dimensional natural convection in square open cavities,” Numer. Heat Transf., vol. 8, no. 1, pp. 65–80, 1985. DOI: 10.1080/01495728508961842.
  • P. Rolka, T. Przybylinski, R. Kwidzinski, and M. Lackowski, “Thermal properties of RT22 HC and RT28 HC phase change materials proposed to reduce energy consumption in heating and cooling systems,” Renew. Energy, vol. 197, pp. 462–471, Sept. 2022. DOI: 10.1016/j.renene.2022.07.080.
  • A. Viorel, C. Nicolae, B. Andreea, G. Mircea, and S. Ştefan. “On the use of infrared thermography as NDT of aerospace materials,” INCAS Bull., vol. 2, no. 3, pp. 3–12, Sept. 2010. DOI: 10.13111/2066-8201.2010.2.3.1.
  • Available online: www.rubitherm.eu (Accessed on October 2017).
  • ANSYS R2021 Fluent Theory Guide, ANSYS, Inc. 2021.
  • A. Shahsavar, A. Godini, P. T. Sardari, D. Toghraie, and H. Salehipour, “Impact of variable fluid properties on forced convection of Fe3O4/CNT/water hybrid nanofluid in a double-pipe mini-channel heat exchanger,” J. Therm. Anal. Calorim., vol. 137, no. 3, pp. 1031–1043, Aug. 2019. DOI: 10.1007/s10973-018-07997-6.
  • A. N. Sadr et al., “Simulation of mixed-convection of water and nano-encapsulated phase change material inside a square cavity with a rotating hot cylinder,” J. Energy Storage, vol. 47, pp. 103606, Mar. 2022. DOI: 10.1016/j.est.2021.103606.
  • M. S. Mahdi, H. B. Mahood, A. N. Campbell, and A. A. Khadom, “Natural convection improvement of PCM melting in partition latent heat energy storage: Numerical study with experimental validation,” Int. Commun. Heat Mass Transf., vol. 126, pp. 105463, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105463.
  • M. Y. Yazici, M. Avci, and O. Aydin, “Combined effects of inclination angle and fin number on thermal performance of a PCM-based heat sink,” Appl. Therm. Eng., vol. 159, pp. 113956, Aug. 2019. DOI: 10.1016/j.applthermaleng.2019.113956.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.