Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 14
205
Views
6
CrossRef citations to date
0
Altmetric
Articles

Study of magnetohydrodynamics-based-mixed convection & entropy generation within the rectangular enclosure with two obstacles for Cu-SiO2 multiwalled carbon nanotubes ternary hybrid nanofluids

& ORCID Icon
Pages 2257-2279 | Received 10 Jan 2023, Accepted 29 May 2023, Published online: 16 Jun 2023

References

  • L. Nasseri, D. E. Ameziani, O. Rahli and R. Bennacer, “Numerical study of mixed convection in a ventilated square enclosure with the lattice Boltzmann method,” Numer. Heat Transf. Part A., vol. 75, no. 10, pp. 674–689, 2019. DOI: 10.1080/10407782.2019.1608765.
  • X. You and S. Li, “Fully developed opposing mixed convection flow in the inclined channel filled with a hybrid nanofluid,” Nanomaterials., vol. 11, no. 5, pp. 1107, 2021. DOI: 10.3390/nano11051107.
  • H. Lamarti, M. Mahdaoui, R. Bennacer Amd, and A. Chahboun, “Numerical simulation of mixed convection heat transfer of fluid in a cavity driven by an oscillating lid using lattice Boltzmann method,” Int. J. Heat Mass Transf., vol. 137, pp. 615–629, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.057.
  • R. Samanta, H. Chattopadhyay, and C. Guha, “Transport phenomena in a differentially heated lid-driven cavity: a study using multi-relaxation-time thermal lattice Boltzmann modeling,” Phys. Fluids., vol. 32, no. 9, pp. 093610, 2020. DOI: 10.1063/5.0021105.
  • H. Shahid, I. Yaqoob, W. A. Khan, and A. Rafique, “ Mixed convection in an isosceles right triangular lid driven cavity using multi relaxation time lattice Boltzmann method,” Int. Commun. Heat Mass Transf., vol. 128, pp. 105552, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105552.
  • W. Zhou, Y. Yan, X. Liu, H. Chen, and B. Liu, “Lattice Boltzmann simulation of mixed convection of nanofluid with different heat sources in a double lid-driven cavity,” Int. Commun. Heat Mass Transf., vol. 97, pp. 39–46, 2018. DOI: 10.1016/j.icheatmasstransfer.2018.07.008.
  • M. Goodarzi, A. D’Orazio, A. Keshavarzi, S. Mousavi, and A. Karimipour, “Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, two case studies: pure natural convection & mixed convection,” Phys. A Stat. Mech. Appl., vol. 509, pp. 210–233, 2018. DOI: 10.1016/j.physa.2018.06.013.
  • H. Shaker, M. Abbasalizadeh, S. Khalilarya, and S. Y. Motlagh, “Two-phase modeling of the effect of non-uniform magnetic field on mixed convection of magnetic nanofluid inside an open cavity,” Int. J. Mech. Sci., vol. 207, pp. 106666, 2021. DOI: 10.1016/j.ijmecsci.2021.106666.
  • M. Lakhi and A. Safavinejad, “Numerical investigation of combined heat transfer (mixed convection-radiation) in 2D channel using the LBM,” Int. Commun. Heat Mass Transf., vol. 126, pp. 105368, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105368.
  • X. Zhang, et al., “Numerical study of mixed convection of nanofluid inside an inlet/outlet inclined cavity under the effect of Brownian motion using Lattice Boltzmann Method (LBM),” Int. Commun. Heat Mass Transf., vol. 126, pp. 105428, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105428.
  • A. Yasin, N. Ullah, S. Nadeem, and H. A. Ghazwani, “Numerical simulation for mixed convection in a parallelogram enclosure: magnetohydrodynamic (MHD) and moving wall-undulation effects,” Int. Commun. Heat Mass Transf., vol. 135, pp. 106066, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106066.
  • K. M. Gangawane and S. Gupta, “ Mixed convection characteristics in rectangular enclosure containing heated elliptical block: effect of direction of moving wall,” Int. J. Therm. Sci., vol. 130, pp. 100–115, 2018. DOI: 10.1016/j.ijthermalsci.2018.04.010.
  • M. Manchanda and K. M. Gangawane, “Mixed convection in a two-sided lid-driven cavity containing heated triangular block for non-Newtonian power-law fluids,” Int. J. Mech. Sci., vol. 144, pp. 235–248, 2018. DOI: 10.1016/j.ijmecsci.2018.06.005.
  • K. M. Gangawane and H. F. Oztop, “Mixed convection in the semi-circular lid-driven cavity with heated curved wall subjugated to constant heat flux for non-Newtonian power-law fluids,” Int. Commun. Heat Mass Transf., vol. 114, pp. 104563, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104563.
  • H. F. Oztop, Z. Zhao, and B. Yu, “Fluid flow due to combined convection in lid-driven enclosure having a circular body,” Int. J. Heat Fluid Flow., vol. 30, no. 5, pp. 886–901, 2009. DOI: 10.1016/j.ijheatfluidflow.2009.04.009.
  • S. E. Ahmed, M. A. Mansour, A. K. Hussein, B. Mallikarjuna, M. A. Almeshaal, and L. Kolsi, “MHD mixed convection in an inclined cavity containing adiabatic obstacle and filled with Cu–water nanofluid in the presence of the heat generation and partial slip,” J. Therm. Anal. Calorim., vol. 138, no. 2, pp. 1443–1460, 2019. DOI: 10.1007/s10973-019-08340-3.
  • S. Sarlak, S. Yousefzadeh, O. A. Akbari, D. Toghraie, R. Sarlak, and F. Assadi, “Numerical investigation of MHD mixed convection of water/CuO nanofluid in a square enclosure with vortex generators in different arrangements,” Heat Trans. Res., vol. 51, no. 6, pp. 571–601, 2020. DOI: 10.1615/HeatTransRes.2018026153.
  • M. Sheikholeslami, Z. Shah, A. Shafee, I. Khan, and I. Tlili, “Uniform magnetic force impact on water based nanofluid thermal behavior in a porous enclosure with ellipse shaped obstacle,” Sci. Rep., vol. 9, no. 1, pp. 1–12, 2019. DOI: 10.1038/s41598-018-37964-y.
  • A. I. Alsabery, T. Tayebi, H. T. Kadhim, M. Ghalambaz, I. Hashim, and A. J. Chamkha, “Impact of two-phase hybrid nanofluid approach on mixed convection inside wavy lid-driven cavity having localized solid block,” J. Adv. Res., vol. 30, pp. 63–74, 2021. DOI: 10.1016/j.jare.2020.09.008.
  • R. J. Singh and T. B. Gohil, “Numerical study of MHD mixed convection flow over a diamond-shaped obstacle using OpenFOAM,” Int. J. Therm. Sci., vol. 146, pp. 106096, 2019. DOI: 10.1016/j.ijthermalsci.2019.106096.
  • C. Fu, et al., “Comprehensive investigations of mixed convection of Fe–ethylene-glycol nanofluid inside an enclosure with different obstacles using lattice Boltzmann method,” Sci. Rep., vol. 11, no. 1, pp. 1–16, 2021. DOI: 10.1038/s41598-021-00038-7.
  • Y. Ma, R. Mohebbi, M. M. Rashidi, and Z. Yang, “MHD convective heat transfer of Ag-MgO/water hybrid nanofluid in a channel with active heaters and coolers,” Int. J. Heat Mass Transf., vol. 137, pp. 714–726, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.169.
  • M. A. Qureshi, S. Hussain, and M. A. Sadiq, “Numerical simulations of MHD mixed convection of hybrid nanofluid flow in a horizontal channel with cavity: impact on heat transfer and hydrodynamic forces,” Case Stud. Therm. Eng., vol. 27, pp. 101321, 2021. DOI: 10.1016/j.csite.2021.101321.
  • R. R. Sahoo and V. Kumar, “Development of a new correlation to determine the viscosity of ternary hybrid nanofluid,” Int. Commun. Heat Mass Transf., vol. 111, pp. 104451, 2020. DOI: 10.1016/j.icheatmasstransfer.2019.104451.
  • S. M. Mousavi, F. Esmaeilzadeh, and X. P. Wang, “Effects of temperature and particles volume concentration on the thermophysical properties and the rheological behavior of CuO/MgO/TiO2 aqueous ternary hybrid nanofluid: experimental investigation,” J. Therm. Anal. Calorim., vol. 137, no. 3, pp. 879–901, 2019. DOI: 10.1007/s10973-019-08006-0.
  • A. Boroomandpour, D. A. Toghraieand, and M. Hashemian, “Comprehensive experimental investigation of thermal conductivity of a ternary hybrid nanofluid containing MWCNT-titania-zinc oxide/water-ethylene glycol (80:20) as well as binary and mono nanofluid,” Synth. Met., vol. 268, pp. 116501, 2020. DOI: 10.1016/j.synthmet.2020.116501.
  • H. Adun, D. Kavaz, I. Wole-Osho, and M. Dagbasi, “Synthesis of Fe3O4-Al2O3-ZnO/water ternary hybrid nanofluid: investigating the effects of temperature, volume concentration and mixture ratio on Specific heat capacity, and development of hybrid machine learning for prediction,” J Energy Storage., vol. 41, pp. 102947, 2021. DOI: 10.1016/j.est.2021.102947.
  • A. Dezfulizadeh, A. Aghaei, A. H. Joshaghani, and M. M. Najafizadeh, “An experimental study on dynamic viscosity and thermal conductivity of water-Cu-SiO2-MWCNT ternary hybrid nanofluid and the development of practical correlations,” Powder Technol., vol. 389, pp. 215–234, 2021. DOI: 10.1016/j.powtec.2021.05.029.
  • T. Elnaqeeb, I. L. Animasaun, and N. A. Shah, “Ternary-hybrid nanofluids: significance of suction and dual-stretching on three-dimensional flow of water conveying nanoparticles with various shapes and densities,” Zeit. Natur. – Sect. A J. Phys. Sci., vol. 76, no. 3, pp. 231–243, 2021. DOI: 10.1515/zna-2020-0317.
  • J. S. Goud, et al., “Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat,” Case Stud. Therm. Eng., vol. 35, pp. 102113, 2022. DOI: 10.1016/j.csite.2022.102113.
  • I. L. Animasaun, S. J. Yook, T. Muhammad, and A. Mathew, “Dynamics of ternary-hybrid nanofluid subject to magnetic flux density and heat source or sink on a convectively heated surface,” Surf. Interfaces, vol. 28, pp. 101654, 2022. DOI: 10.1016/j.surfin.2021.101654.
  • O. Mahian, et al., “A review of entropy generation in nanofluid flow,” Int. J. Heat Mass Transf., vol. 65, pp. 514–532, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.06.010.
  • G. Huminic and A. Huminic, “Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems: a review,” J. Mol. Liq., vol. 302, pp. 112533, 2020. DOI: 10.1016/j.molliq.2020.112533.
  • P. Karki, D. A. Perumal, and A. K. Yadav, “Comparative studies on air, water and nanofluids based Rayleigh–Benard natural convection using lattice Boltzmann method: CFD and exergy analysis,” J. Therm. Anal. Calorim., vol. 147, no. 2, pp. 1487–1503, 2022. DOI: 10.1007/s10973-020-10496-2.
  • A. H. Mahmoudi, I. Pop, M. Shahi, and F. Talebi, “MHD natural convection and entropy generation in a trapezoidal enclosure using Cu-water nanofluid,” Comput. Fluids., vol. 72, pp. 46–62, 2013. DOI: 10.1016/j.compfluid.2012.11.014.
  • H. Zhang, et al., “Numerical study of mixed convection and entropy generation of water-Ag nanofluid filled semi-elliptic lid-driven cavity,” Alexandria Eng. J., vol. 61, no. 11, pp. 8875–8896, 2022. DOI: 10.1016/j.aej.2022.02.028.
  • S. Hussain, S. E. Ahmed, and T. Akbar, “Entropy generation analysis in MHD mixed convection of hybrid nanofluid in an open cavity with a horizontal channel containing an adiabatic obstacle,” Int. J. Heat Mass Transf., vol. 114, pp. 1054–1066, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.135.
  • M. S. Ishak, A. I. Alsabery, I. Hashim, and A. J. Chamkha, “Entropy production and mixed convection within trapezoidal cavity having nanofluids and localised solid cylinder,” Sci. Rep., vol. 11, no. 1, pp. 1–22, 2021. DOI: 10.1038/s41598-021-94238-w.
  • P. Barnoon, D. Toghraie, R. B. Dehkordi, and H. Abed, “MHD mixed convection and entropy generation in a lid-driven cavity with rotating cylinders filled by a nanofluid using two phase mixture model,” J. Magn. Magn. Mater., vol. 483, pp. 224–248, 2019. DOI: 10.1016/j.jmmm.2019.03.108.
  • A. Shahsavar, M. Shahmohammadi, and I. B. Askari, “The effect of inlet/outlet number and arrangement on hydrothermal behavior and entropy generation of the laminar water flow in a pin-fin heat sink,” Int. Commun. Heat Mass Transf., vol. 127, pp. 105500, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105500.
  • A. Shahsavar, M. Shahmohammadi, and I. B. Askari, “CFD simulation of the impact of tip clearance on the hydrothermal performance and entropy generation of a water-cooled pin-fin heat sink,” Int. Commun. Heat Mass Transf., vol. 126, pp. 105400, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105400.
  • A. Shahsavar, O. Yari, and I. B. Askari, “The entropy generation analysis of forward and backward laminar water flow in a plate-pin-fin heatsink considering three different splitters,” Int. Commun. Heat Mass Transf., vol. 120, pp. 10506, 2021. DOI: 10.1016/j.icheatmasstransfer.2020.105026.
  • A. Shahsavar, M. Jafari, I. B. Askari, and F. Selimefendigil, “Thermo-hydraulic performance and entropy generation of biologically synthesized silver/water-ethylene glycol nano-fluid flow inside a rifled tube using two-phase mixture model,” Energy Sour, Part A Recov Utiliz. Environ. Effects., vol. 45, no. 2, pp. 4463–4480, 2023. DOI: 10.1080/15567036.2020.1850932.
  • M. Hasani, I. B. Askari, and A. Shahsavar, “Two-phase mixture simulation of the performance of a grooved helical microchannel heat sink filled with biologically prepared water-silver nanofluid: hydrothermal characteristics and irreversibility behavior,” Appl. Therm. Eng., vol. 202, pp. 117848, 2022. DOI: 10.1016/j.applthermaleng.2021.117848.
  • C. S. Laurel, J. M. Cardemil, and W. R. Calderón-Muñoz, “Local entropy generation model for numerical CFD analysis of fluid flows through porous media, under laminar and turbulent regimes,” Eng. Appl. Comput. Fluid Mech., vol. 16, no. 1, pp. 804–825, 2022. DOI: 10.1080/19942060.2022.2040595.
  • Z. Shah, A. Saeed, I. Khan, M. M. Selim, Ikramullah, and P. Kumam, “Numerical modeling on hybrid nanofluid (Fe3O4+MWCNT/H2O) migration considering MHD effect over a porous cylinder,” PLoS One., vol. 16, no. 7, pp. e0251744, 2021. DOI: 10.1371/journal.pone.0251744.
  • M.Gauthier, View Table of Contents Engineered Materials Handbook Desk Edition, ASM International, 1995.
  • A. A. Minea, “Hybrid nanofluids based on Al2O3, TiO2 and SiO2: numerical evaluation of different approaches,” Int. J. Heat Mass Transf., vol. 104, pp. 852–860, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.09.012.
  • S. R. Bhopalam, D. A. Perumal, and A. K. Yadav, “Computational appraisal of fluid flow behavior in two-sided oscillating lid-driven cavities,” Int. J. Mech. Sci., vol. 196, pp. 106303, 2021. DOI: 10.1016/j.ijmecsci.2021.106303.
  • G. R. Kefayati, M. Gorji-Bandpy, H. Sajjadi, and D. D. Ganji, “Lattice Boltzmann simulation of MHD mixed convection in a lid-driven square cavity with linearly heated wall,” Sci. Iran., vol. 19, no. 4, pp. 1053–1065, 2012. DOI: 10.1016/j.scient.2012.06.015.
  • S. N. Nia, F. Rabiei, M. M. Rashidi, and T. M. Kwang, “Lattice Boltzmann simulation of natural convection heat transfer of a nanofluid in a L-shape enclosure with a baffle,” Results Phys., vol. 19, pp. 103413, 2020. DOI: 10.1016/j.rinp.2020.103413.
  • F. Selimefendigil and H. F. Öztop, “MHD mixed convection and entropy generation of power law fluids in a cavity with a partial heater under the effect of a rotating cylinder,” Int. J. Heat Mass Transf., vol. 98, pp. 40–51, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.02.092.
  • T. Tayebi and A. J. Chamkha, “Entropy generation analysis due to MHD natural convection flow in a cavity occupied with hybrid nanofluid and equipped with a conducting hollow cylinder,” J. Therm. Anal. Calorim., vol. 139, no. 3, pp. 2165–2179, 2020. DOI: 10.1007/s10973-019-08651-5.
  • R. D. C. Oliveski, M. H. Macagnan, and J. B. Copetti, “Entropy generation and natural convection in rectangular cavities,” Appl. Therm. Eng., vol. 29, no. 8-9, pp. 1417–1425, 2009. DOI: 10.1016/j.applthermaleng.2008.07.012.
  • T. R. Vijaybabu, “Influence of permeable circular body and CuO − H2O nanofluid on buoyancy-driven flow and entropy generation,” Int. J. Mech. Sci., vol. 166, pp. 105240, 2020. DOI: 10.1016/j.ijmecsci.2019.105240.
  • N. Biswas, N. K. Manna, and P. S. Mahapatra, “Enhanced thermal energy transport using adiabatic block inside lid-driven cavity,” Int. J. Heat Mass Transf., vol. 100, pp. 407–427, 2016. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.04.074.
  • M. Roy, S. Roy, and T. Basak, “Role of various moving walls on energy transfer rates via heat flow visualization during mixed convection in square cavities,” Energy., vol. 82, pp. 1–22, 2015. DOI: 10.1016/j.energy.2014.11.059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.