Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 14
69
Views
1
CrossRef citations to date
0
Altmetric
Articles

Heat transfer augmentation by plate motion in a wall jet flow over a heated plate: A conjugate heat transfer technique

ORCID Icon &
Pages 2280-2297 | Received 08 Feb 2023, Accepted 19 May 2023, Published online: 16 Jun 2023

References

  • S. Shah, “Numerical analysis of heat transfer between multiple jets and flat moving surface,” Int. J. Heat Mass Transf., vol. 171, pp. 1–13, 2021.
  • Y. Jaluria and A. P. Singh, “Temperature distribution in a moving material subjected to surface energy transfer,” Comput. Methods Appl. Mech. Eng., vol. 41, no. 2, pp. 145–157, 1983. DOI: 10.1016/0045-7825(83)90003-8.
  • R. S. AbdoulNour, K. Willenborg, J. J. McGrath, J. F. Foss, and B. S. AbdulNour, “Measurements of the convection heat transfer coefficient for a planar wall jet: Uniform temperature and uniform heat flux boundary conditions,” Exper. Therm. Fluid Sci., vol. 22, no. 3–4, pp. 123–131, 2000. DOI: 10.1016/S0894-1777(00)00018-2.
  • S. Gogineni and C. Shih, “Experimental investigation of the unsteady structure of a transitional plane wall jet,” Exp. Fluids, vol. 23, no. 2, pp. 121–129, 1997. DOI: 10.1007/s003480050093.
  • I. Wygnanski, Y. Katz, and E. Horev, “On the applicability of various scaling laws to the turbulent wall jet,” J. Fluid Mech., vol. 234, no. 1, pp. 669–690, 1992. DOI: 10.1017/S002211209200096X.
  • S. Kumar and A. Kumar, “Experimental study of the sidewall effect on three-dimensional turbulent wall jet,” J Fluid Eng. Trans. ASME, vol. 144, no. 1, pp. 1–13, 2022.
  • P. Y. Nizou, “Heat and momentum transfer in a plane turbulent wall jet,” J. Heat Mass Transf. Trans. ASME., vol. 103, no. 1, pp. 138–140, 1981. DOI: 10.1115/1.3244407.
  • C. Carcasci, L. Cocchi, B. Facchini, and D. Massini, “Impingement cooling experimental investigation using different heating elements,” Energy Proc., vol. 101, pp. 18–25, 2016. DOI: 10.1016/j.egypro.2016.11.003.
  • S. C. Godi, A. Pattamatta, and C. Balaji, “Heat transfer from a single and row of three-dimensional wall jets - A combined experimental and numerical study,” Int. J. Heat Mass Transf., vol. 159, pp. 1–18, 2020.
  • T. J. Craft, H. Iacovides, and S. Uapipatanakul, “Towards the development of RANS models for conjugate heat transfer,” J. Turbul., vol. 6, pp. 1–12, 2009.
  • G. Yang, H. Lacovides, T. Craft, and D. Apsley, “RANS model development on temperature variance in conjugate heat transfer,” J. Turbul., vol. 22, no. 3, pp. 180–207, 2021. DOI: 10.1080/14685248.2020.1860214.
  • E. Vishnuvardhanarao and M. K. Das, “Computational study of heat transfer in a conjugate turbulent wall jet flow with constant heat flux,” Int. J. Numer. Methods Heat Fluid Flow, vol. 19, no. 1, pp. 39–52, 2009. DOI: 10.1108/09615530910922143.
  • T. Mondal and S. M. O'Shaughnessy, “Numerical investigation of conjugate heat transfer to a turbulent dual offset jet,” Int. J. Therm. Sci., vol. 180, no. 10, pp. 1–13, 2022.
  • Q. Deng, H. Wang, W. He, and Z. Feng, “Cooling characteristic of a wall jet for suppressing cross flow effect under conjugate heat transfer condition,” Aerospace, vol. 9, no. 1, pp. 29, 2022. DOI: 10.3390/aerospace9010029.
  • N. Satish and K. Venkatasubbaiah, “Conjugate heat transfer analysis of turbulent forced convection of moving plate in a channel flow,” Appl. Therm. Eng., vol. 100, pp. 987–998, 2016. DOI: 10.1016/j.applthermaleng.2016.02.076.
  • V. M. Behera and S. K. Rathore, “The effect of plate motion on heat transfer enhancement using turbulent offset jet flow: A conjugate approach,” Int. Commun. Heat Mass Transf., vol. 136, pp. 1–13, 2022.
  • Z. Yang and T. H. Shih, “A new time scale based k−ε model for near wall turbulence,” NASA Tech. Memorandum, No. 105768, pp. 1–24, 1992.
  • H. Coşanay, H. F. Öztop, M. Gür, and E. Bakır, “Analysis of turbulent wall jet impingement onto a moving heated body,” HFF., vol. 32, no. 9, pp. 2938–2963, 2022. DOI: 10.1108/HFF-08-2021-0521.
  • P. Dutta and H. Chattopadhyay, “Heat transfer due to annular jets impinging on a moving surface,” J. Heat Mass Transf. Trans. ASME., vol. 144, no. 8, pp. 1–14, 2022.
  • N. Madhukeshwara, “Optimum thermo-hydraulic performance of solar air heater provided with cubical roughness on the absorber surface,” Exp. Heat Transf., vol. 33, no. 4, pp. 374–387, 2020.
  • N. Madhukeshwara, “Nusselt number and friction factor correlations for the solar air heater duct furnished with artificial cube shaped roughness elements on the absorber plate,” Heat Mass Transf., vol. 57, pp. 2013–2021, 1997.
  • N. Madhukeshwara, A. Alhadhrami, H. A. H. Alzahrani, and B. H. Prasanna, “Thermal–hydraulic analysis of a solar air heater fitted with a wire-roughened absorber plate,” Proc. I Mech. E Part E: J. Process. Mech. Eng., pp. 1–13, 2021. DOI: 10.1177/09544089211059044.
  • A. O. Alsaiari, H. A. H. Alzahrani, N. Madhukeshwara, and B. M. Prasanna, “Heat transfer augmentation in a solar air heater with conical roughness elements on the absorber,” Case Stud. Therm. Eng., vol. 36, pp. 102210, 2022. DOI: 10.1016/j.csite.2022.102210.
  • A. Alhadhrami et al., “Impact of Stefan blowing and magnetic dipole on bio-convective flow of Maxwell nanofluid over a stretching sheet,” Proc. I Mech. E Part E: J. Process. Mech. Eng., pp. 1–14, 2021. DOI: 10.1177/09544089211058107.
  • A. O. Alsaiari et al., “Heat transmission and air flow friction in a solar air heater with a ribbed absorber plate: A computational study,” Case Stud. Therm. Eng., vol. 40, pp. 102517, 2022. DOI: 10.1016/j.csite.2022.102517.
  • A. Alhadhrami et al., “Impact of thermophoretic particle deposition on Glauert wall jet slip flow of nanofluid,” Case Stud. Ther. Eng., vol. 28, pp. 101404, 2021. DOI: 10.1016/j.csite.2021.101404.
  • X. Nie, Z. H. Zhu, H. B. Liao, Y. Z. Zhang, and J. R. Xu, “A comparative study of the buoyancy-opposed wall jet using different turbulent models,” J. Appl. Fluid Mech., vol. 15, pp. 85–98, 2022.
  • J. P. Abraham and E. M. Sparrow, “Friction drag resulting from the simultaneous imposed motions of a freestream and its bounding surface,” Int. J. Heat Mass Fluid Flow, vol. 26, no. 2, pp. 289–295, 2005. DOI: 10.1016/j.ijheatfluidflow.2004.08.007.
  • E. M. Sparrow and J. P. Abraham, “Universal solutions for the streamwise variation of the temperature of a moving sheet in the presence of a moving fluid,” Int. J. Heat Mass Transf., vol. 48, no. 15, pp. 3047–3056, 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.02.028.
  • V. M. Behera and S. K. Rathore, “Investigation of flow behavior of turbulent wall-jet in the viscous shear regime with moving wall condition,” J. Fluids Eng., vol. 145, pp. 1–13, 2022.
  • G. Biswas and V. Eswaran, Turbulent Flows: Fundamentals, Experiments and Modeling, IIT Kanpur Series of Advanced Texts. Pangbourne, England: Alpha Science International Ltd., 2002.
  • S. K. Rathore and M. K. Das, “Comparison of two low-Reynolds number turbulence models for fluid flow study of wall bounded jets,” Int. J. Heat Mass Transf., vol. 61, pp. 365–380, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.01.062.
  • S. K. Rathore and M. K. Das, ““Numerical investigation on the performance of low-Reynolds number k−ε model for a buoyancy-opposed wall jet flow,” Int. J. Heat Mass Transf., vol. 95, pp. 636–649, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.10.067.
  • G. Nasif, R. Balachandar, and R. M. Barron, “Conjugate analysis of wall conduction effects on the thermal characteristics of impinging jets,” Int J. Heat Mass Transf., vol. 116, pp. 259–272, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.034.
  • M. Behnia, S. Parneix, and P. Durbin, “Simulation of jet impingement heat transfer with the k−ε ‐ v2  model,” Center Turbul. Res. Annu. Res. Briefs, pp. 3–16, 1996.
  • A. M. Achari and M. K. Das, “Conjugate heat transfer study of a turbulent slot jet impinging on a moving plate,” Heat Mass Transf., vol. 53, no. 3, pp. 1017–1035, 2017. DOI: 10.1007/s00231-016-1873-7.
  • V. M. Behera and S. K. Rathore, “Numerical investigation of turbulent offset jet flow over a moving flat plate using low-Reynolds number turbulence model,” J Therm. Sci. Eng. Appl., vol. 13, pp. 1–15, 2021.
  • W. M. Kays, “Turbulent Prandtl number - Where are we?,” J. Heat Mass Transf. Trans. ASME, vol. 116, no. 2, pp. 284–295, 1994. DOI: 10.1115/1.2911398.
  • F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed. USA: Wiley, 2015.
  • V. M. Behera and S. K. Rathore, “Effect of offset ratio and plate motion on conjugate heat transfer in a turbulent offset jet flow over the heated plate,” J. Heat Mass Transf. Trans. ASME., vol. 145, no. 7, pp. 1–12, 2023.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow, 3rd ed. New York, USA: Hemisphere Publishing Corporation, 1980.
  • J. E. Bardina, P. G. Huang, and T. J. Coakley, “Turbulence modeling validation, testing, and development,” Nasa Tech. Memorandum, pp. 20, 1997.
  • H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, 2nd ed. England: Pearson Prentice Hall, 2007.
  • J. G. Eriksson, R. I. Karlsson, and J. Persson, “An experimental study of a two-dimensional plane turbulent wall jet,” Exp. Fluids, vol. 25, no. 1, pp. 50–60, 1998. DOI: 10.1007/s003480050207.
  • A. H. Beitelmal, M. A. Saad, and C. D. Patel, “The effect of inclination on the heat transfer between a flat surface and an impinging two-dimensional air jet,” Int J. Heat Fluid Flow, vol. 21, no. 2, pp. 156–163, 2000. DOI: 10.1016/S0142-727X(99)00080-6.
  • J. C. Crittenden, R. Trussell, D. W. Hand, K. J. Howe, and G. Tchobanoglous, MWH’s Water Treatment: Principles and Design, Appendix C, 3rd ed. Canada: Wiley, 2012, pp. 1861–1863.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.