Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 14
158
Views
1
CrossRef citations to date
0
Altmetric
Articles

Numerical study of the process of liquid droplets impacting the curved wall surface

, , , &
Pages 2298-2314 | Received 16 Dec 2022, Accepted 26 May 2023, Published online: 24 Jun 2023

References

  • M. B. Liu and Z. L. Zhang, “Smoothed particle hydrodynamics (SPH): a meshfree particle method,” World Sci., pp.1-5, 2003.
  • J. Eggers, M. A. Fontelos, C. Josserand, and S. Zaleski, “Drop dynamics after impact on a solid wall: theory and simulations,” Phys. Fluids, vol. 22, no. 6, pp. 062101, Jun. 2010. DOI: 10.1063/1.3432498.
  • A. I. Fedorchenko, A. B. Wang, and Y. H. Wang, “Effect of capillary and viscous forces on spreading of a liquid drop impinging on a solid surface,” Phys. Fluids, vol. 17, no. 9, pp. 093104, Sep. 2005. DOI: 10.1063/1.2038367.
  • W. L. Tian, H. Zhang, and Q. Liu, “Experimental study on single droplet impinging on a heated and inclined wall at early impaction stage,” Ann. Uncle. Energy, vol. 147, pp. 107697, Jul. 2020. DOI: 10.1016/j.anucene.2020.107697.
  • C. Clanet, C. Beguin, D. Richard, and D. Quere, “Maximal deformation of an impacting drop,” J. Fluid Mech., vol. 517, pp. 199–208, Oct. 2004. DOI: 10.1017/S0022112004000904.
  • S. Q. Shen, F. F. Bi, and Y. L. Guo, “Simulation of droplets impact on curved surfaces with lattice Boltzmann method,” Int. J. Heat Mass Transf., vol. 55, no. 23-24, pp. 6938–6943, Nov. 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.07.007.
  • S. Bakshi, I. V. Roisman, and C. Tropea, “Investigations on the impact of a drop onto a small spherical target,” Phys. Fluids, vol. 19, no. 3, pp. 032102, Mar. 2007. DOI: 10.1063/1.2716065.
  • S. Mitra et al., “Droplet impact dynamics on a spherical particle,” Chem. Eng. Sci., vol. 100, pp. 105–119, Aug. 2013. DOI: 10.1016/j.ces.2013.01.037.
  • Y. J. Sun and D. Y. Zhao, “Experimental study on the kinetic characteristics of liquid droplet impacting high temperature surfaces,” Surf. Eng. Remanuf., vol. 18, no. 02, pp. 28–32, Apr. 2018 (in Chinese).
  • D. Zhang, K. Papadikis, and S. Gu, “Application of a high-density ratio lattice-Boltzmann model for the droplet impingement on flat and spherical surfaces,” Int. J. Therm. Sci., vol. 84, pp. 75–85, Oct. 2014. DOI: 10.1016/j.ijthermalsci.2014.05.002.
  • A. G. Islamova et al., “The collisions of droplets and particles at the different initial temperatures,” Int. J. Heat Mass Transf., vol. 196, pp. 123301, Aug. 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.123301.
  • X. Liu et al., “Maximum spreading of droplets impacting spherical surfaces,” Phys. Fluids, vol. 31, pp. 092102, Sep. 2019. DOI: 10.1063/1.5117278.
  • S. Mitra and G. Evans, “Dynamic surface wetting and heat transfer in a droplet-particle system of less than unity size ratio,” Front. Chem., vol. 6, p. 259, Nov. 2018. DOI: 10.3389/fchem.2018.00259.
  • Y. Yao, C. Li, H. Zhang, and R. Yang, “Modelling the impact, spreading and freezing of a water droplet on horizontal and inclined superhydrophobic cooled surfaces,” Appl. Surf. Sci., vol. 419, no. 15, pp. 52–62, Oct. 2017. DOI: 10.1016/j.apsusc.2017.04.085.
  • Z. W. Zheng, D. S. Li, X. Q. Qiu, X. L. Zhu, and Y. J. Cui, “Numerical analysis of droplet collision spherical surface composite Level Set-VOF method,” J. Chem. Eng., vol. 66, no. 5, pp. 1667–1675, May 2015 (in Chinese). DOI: 10.11949/j.issn.0438-1157.20141116.
  • X. H. Liu, Y. M. Zhao, K. M. Wang, and S. Q. Shen, “Study on the effect of viscous force and surface tension on the kinetic properties of liquid droplets impacting superhydrophobic tube walls,” J. Sol. Energy, vol. 41, no. 10, pp, pp. 1–7, 2020 (in Chinese).
  • G. Wu et al., “Simulation on a three-dimensional collision of a moving droplet against a moving super-hydrophobic particle,” Powder Technol., vol. 405, pp. 117558, Jun. 2022. DOI: 10.1016/j.powtec.2022.117558.
  • S. Mitra et al., “Interactions in droplet and particle system of near unity size ratio,” Chem. Eng. Sci., vol. 170, pp. 154–175, Jun. 2017. DOI: 10.1016/j.ces.2017.03.059.
  • I. Malgarinos et al., “A numerical study on droplet-particle collision dynamics,” Int. J. Heat Fluid Flow, vol. 61, pp. 499–509, Oct. 2016. DOI: 10.1016/j.ijheatfluidflow.2016.06.010.
  • S. Mitra et al., “On wetting characteristics of droplet on a spherical particle in film boiling regime,” Chem. Eng. Sci., vol. 149, pp. 181–203, Jun. 2016. DOI: 10.1016/j.ces.2016.04.003.
  • M. B. Liu and S. H. Li, “On the modeling of viscous incompressible flows with smoothed particle hydrodynamics,” J. Hydrodyn., vol. 28, no. 5, pp. 731–745, Oct. 2016. DOI: 10.1016/S1001-6058(16)60676-5.
  • A. Colagrossi and M. Landrini, “Numerical simulation of interfacial flows by smoothed particle hydrodynamics,” J. Comput. Phys., vol. 191, no. 2, pp. 448–475, Nov. 2003. DOI: 10.1016/S0021-9991(03)00324-3.
  • J. P. Morris, “Simulating surface tension with smoothed particle hydrodynamics,” Int. J. Numer. Meth. Fluids, vol. 33, no. 3, pp. 333–353, Jun. 2000. DOI: 10.1002/1097-0363(20000615)33:3<333::AID-FLD11>3.0.CO;2-7.
  • H. F. Qiang, F. Z. Chen, and W. R. Gao, “The SPH method for modified surface tension algorithm and its implementation,” Comput. Phys., vol. 28, no. 03, pp. 375–384, 2011 (in Chinese). DOI: 10.19596/j.cnki.1001-246x.2011.03.009.
  • S. F. Kistler, “Hydrodynamics of wetting,” Fluid Dyn., vol. 6, pp. 311–430, 1993.
  • P. N. Sun, A. Colagrossi, S. Marrone, and A. M. Zhang, “The plus δ -SPH model: simple procedures for a further improvement of the SPH scheme,” Comput. Methods Appl. Mech. Eng., vol. 315, pp. 25–49, Mar. 2017. DOI: 10.1016/j.cma.2016.10.028.
  • J. J. Monaghan, “On the problem of penetration in particle methods,” J. Comput. Phys., vol. 82, no. 1, pp. 1–15, May 1989. DOI: 10.1016/0021-9991(89)90032-6.
  • Z. L. Zhang and M. B. Liu, “A decoupled finite particle method for modeling incompressible flows with free surfaces,” Appl. Math. Model., vol. 60, pp. 606–633, Aug. 2018. DOI: 10.1016/j.apm.2018.03.043.
  • J. R. Shao, H. Q. Li, G. R. Liu, and M. B. Liu, “An improved SPH method for modeling liquid sloshing dynamics,” Comput. Struct., vol. 100-101, pp. 18–26, Jun. 2012. DOI: 10.1016/j.compstruc.2012.02.005.
  • G. Y. Li et al., “An integrated smoothed particle hydrodynamics method for numerical simulation of the droplet impacting with heat transfer,” Eng. Anal. Bound. Elem., vol. 124, pp. 1–13, 2021. DOI: 10.1016/j.enganabound.2020.12.003.
  • G. T. Liang, Y. L. Guo and S. Q. Shen, “Observational analysis of liquid droplet low-velocity impact wetting spherical surface phenomenon,” J. Phys., vol. 62, no. 18, pp. 328–333, Sep. 2013. DOI: 10.7498/aps.62.184703.
  • Y. Du et al., “Numerical study on droplets impacting solid spheres: effect of fluid properties and sphere diameter,” Colloids Surf. A., vol. 625, pp. 126862, 2021. DOI: 10.1016/j.colsurfa.2021.126862.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.