Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 14
145
Views
5
CrossRef citations to date
0
Altmetric
Articles

Mixed convective-quadratic radiative MoS2SiO2/H2O hybrid nanofluid flow over an exponentially shrinking permeable Riga surface with slip velocity and convective boundary conditions: Entropy and stability analysis

&
Pages 2315-2340 | Received 03 Jan 2023, Accepted 26 May 2023, Published online: 16 Jun 2023

References

  • B. Mahanthesh, S. A. Shehzad, T. Ambreen, and S. U. Khan, “Significance of Joule heating and viscous heating on heat transport of MoS2−Ag hybrid nanofluid past an isothermal wedge,” J. Therm. Anal. Calorim, vol. 143, no. 2, pp. 1221–1229, 2021. DOI: 10.1007/s10973-020-09578-y.
  • E. N. Maraj, Z. Iqbal, E. Azhar, and Z. Mehmood, “A comprehensive shape factor analysis using transportation of MoS2−SiO2/H2O inside an isothermal semi-vertical inverted cone with porous boundary,” Results Phys., vol. 8, pp. 633–641, 2018. DOI: 10.1016/j.rinp.2017.12.077.
  • M. I. Khan, S. A. Khan, T. Hayat, M. I. Khan, and A. Alsaedi, “Arrhenius activation energy impact in binary chemically reactive flow of TiO2−Cu−H2O hybrid nanomaterial,” J. Chem. Reactor Engin., vol. 17, no. 3, p. 20180183, 2018. DOI: 10.1515/ijcre-2018-0183.
  • L. A. Lund, O. Zurni, J. Raza, and I. Khan, “Magnetohydrodynamic flow of Cu−Fe3O4/H2O hybrid nanofluid with the effect of viscous dissipation: dual similarity solutions,” J. Therm Anal. Calorim, vol. 143, no. 2, pp. 915–927, 2021. DOI: 10.1007/s10973-020-09602-1.
  • B. Ali, S. Hussain, M. Shafique, D. Habib, and G. Rasool, “Analyzing the interaction of hybrid base liquid C2H6O2−H2O with hybrid nano-material Ag−MoS2 for unsteady rotational flow referred to an elongated surface using modified Buongiornos model: FEM simulation,” Math. Computers in Simul., vol. 190, pp. 57–74, 2021. DOI: 10.1016/j.matcom.2021.05.012.
  • M. Khan and A. Rasheed, “Slip velocity and temperature jump effects on molybdenum disulfide MoS2 and silicon oxide SiO2 hybrid nanofluid near irregular 3D surface,” Alex. Eng. J., vol. 60, no. 1, pp. 1689–1701, 2021. DOI: 10.1016/j.aej.2020.11.019.
  • M. Yaseen, R. Garia, S. K. Rawat, and M. Kumar, “Hybrid nanofluid flow over a vertical flat plate with Marangoni convection in the presence of quadratic thermal radiation and exponential heat source,” Int. J. Ambient Energy, vol. 44, no. 1, pp. 527–541, 2023. DOI: 10.1080/01430750.2022.2132287.
  • A. Gailitis, “On the possibility to reduce the hydrodynamic drag of a plate in an electrolyte,” Appl. Magnetohydrodynamics, Rep. Inst. Phys. Riga, vol. 13, pp. 143–146, 1961.
  • N. S. Khashi’ie, N. Md Arifin, and I. Pop, “Mixed convective stagnation point flow towards a vertical riga plate in hybrid Cu−Al2O3/water nanofluid,” Mathematics, vol. 8, no. 6, pp. 912, 2020. DOI: 10.3390/math8060912.
  • N. S. Khashiie, I. Waini, N. S. Wahid, N. M. Arifin, and I. Pop, “Unsteady separated stagnation point flow due to an EMHD Riga plate with heat generation in hybrid nanofluid,” Chinese J. Phys., vol. 81, pp. 181–192, 2020. DOI: 10.1016/j.cjph.2022.10.010.
  • M. Ayub, T. Abbas, and M. M. Bhatti, “Inspiration of slip effects on electromagnetohydrodynamics (EMHD) nanofluid flow through a horizontal Riga plate,” The Euro. Phys. J. Plus, vol. 131, no. 6, pp. 1–9, 2016.
  • N. S. Khashi’ie, N. M. Arifin, M. Sheremet, and I. Pop, “Shape factor effect of radiative Cu−Al2O3/H2O hybrid nanofluid flow towards an EMHD plate,” Case Studies in Therm. Eng., vol. 26, pp. 101199, 2021. DOI: 10.1016/j.csite.2021.101199.
  • R. Ahmad, M. Mustafa, and M. Turkyilmazoglu, “Buoyancy effects on nanofluid flow past a convectively heated vertical Riga-plate: a numerical study,” Int. J. Heat Mass Transf, vol. 111, pp. 827–835, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.04.046.
  • I. Waini, A. Ishak, and I. Pop, “Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid,” Int. J. Heat Mass Transfer, vol. 136, pp. 288–297, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.02.101.
  • E. H. Aly and I. Pop, “MHD flow and heat transfer near stagnation point over a stretching/shrinking surface with partial slip and viscous dissipation: hybrid nanofluid versus nanofluid,” Powder Technology, vol. 367, pp. 192–205, 2020. DOI: 10.1016/j.powtec.2020.03.030.
  • M. D. Shamshuddin and M. R. Eid, “Magnetized nanofluid flow of ferromagnetic nanoparticles from parallel stretchable rotating disk with variable viscosity and thermal conductivity,” Chinese J. Phys., vol. 74, pp. 20–37, 2021. DOI: 10.1016/j.cjph.2021.07.038.
  • H. B. Lanjwani, S. Saleem, M. S. Chandio, M. I. Anwar, and N. Abbas, “Stability analysis of triple solutions of Casson nanofluid past on a vertical exponentially stretching/shrinking sheet,” Adv. in Mech. Eng., vol. 13, no. 11, pp. 1–13, 2021.
  • A. K. Pandey, H. Upreti, N. Joshi, and Z. Uddin, “Effect of natural convection on 3D MHD flow of MoS2−GO/H2O via porous surface due to multiple slip mechanisms,” J. Taibah Univ. Sci., vol. 16, no. 1, pp. 749–762, 2022. DOI: 10.1080/16583655.2022.2113729.
  • K. Thriveni and B. Mahanthesh, “Significance of variable fluid properties on hybrid nanoliquid flow in a micro-annulus with quadratic convection and quadratic thermal radiation: response surface methodology,” Int. Commun. Heat Mass Transfer, vol. 124, pp. 105264, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105264.
  • S. Shaw, S. S. Samantaray, A. Misra, M. K. Nayak, and O. D. Makinde, “Hydromagnetic flow and thermal interpretations of Cross hybrid nanofluid influenced by linear, nonlinear and quadratic thermal radiations for any Prandtl number,” Int. Commun. Heat Mass Transfer, vol. 130, pp. 105816, 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105816.
  • B. Mahanthesh, J. Mackolil, M. Radhika, W. Al-Kouz, and Siddabasappa, “Significance of quadratic thermal radiation and quadratic convection on boundary layer two-phase flow of a dusty nanoliquid past a vertical plate,” Int. Commun. Heat Mass Transf, vol. 120, pp. 105029, 2021. DOI: 10.1016/j.icheatmasstransfer.2020.105029.
  • W. Al-Kouz, B. Mahanthesh, M. S. Alqarni, and K. Thriveni, “A study of quadratic thermal radiation and quadratic convection on viscoelastic material flow with two different heat source modulations,” Int. Commun. Heat Mass Transf., vol. 126, pp. 105364, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105364.
  • M. Sreenivasulu and R. B. Vijaya, “Influence of activation energy on the hybrid nanofluid flow over a flat plate with quadratic thermal radiation: an irreversibility analysis,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 8878–8887, 2022. DOI: 10.1080/01430750.2022.2111356.
  • M. Yaseen, S. K. Rawat, and M. Kumar, “Hybrid nanofluid (MoS2−SiO2/water) flow with viscous dissipation and Ohmic heating on an irregular variably thick convex/concave-shaped sheet in a porous medium,” Heat Trans., vol. 51, no. 1, pp. 789–817, 2022. DOI: 10.1002/htj.22330.
  • D. P. C. Rao, S. Thiagarajan, and V. S. Kumar, “Significance of quadratic thermal radiation on the bioconvective flow of Ree-Eyring fluid through an inclined plate with viscous dissipation and chemical reaction: non-Fourier heat flux model,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 6436–6448, 2022.
  • H. Salas, S. Cuevas, and M. L. d Haro, “Entropy generation analysis of magnetohydrodynamic induction devices,” J. Phys. D: Appl. Phys., vol. 32, no. 20, pp. 2605–2608, 1999. DOI: 10.1088/0022-3727/32/20/304.
  • M. Khan, T. Salahuddin, and M. Altanji, “A viscously dissipated Blasisus boundary layer flow with variable thermo-physical properties: an entropy generation study,” Int. Commun. in Heat and Mass Transfer, vol. 131, pp. 105873, 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105873.
  • G. Mandal and D. Pal, “Entropy generation analysis of radiated magnetohydrodynamic flow of carbon nanotubes nanofluids with variable conductivity and diffusivity subjected to chemical reaction,” J Nanofluids, vol. 10, no. 4, pp. 491–505, 2021. DOI: 10.1166/jon.2021.1812.
  • E. Lakzian and M. Hekmatshoar, “A Similarity Solution on Entropy Generation for the mixed convective stagnation-point flow of silica-alumina hybrid nanofluid on a porous surface in presence of magnetic field: A Simple Model for Surface Cooling,” J. Mech. Engin., vol. 51, no. 4, pp. 251–258, 2022.
  • T. Rahim, J. Hasnain, N. Abid, and Z. Abbas, “Entropy generation for mixed convection flow in vertical annulus with two regions hydromagnetic viscous and Cu-Ag water hybrid nanofluid through porous zone: a comparative numerical study,” Propulsion Power Res., vol. 11, no. 3, pp. 401–415, 2022. DOI: 10.1016/j.jppr.2022.07.004.
  • N. A. Zainal, R. Nazar, K. Naganthran, and I. Pop, “Stability analysis of MHD hybrid nanofluid flow over a stretching/shrinking sheet with quadratic velocity,” Alexandria Eng. J., vol. 60, no. 1, pp. 915–926, 2021. DOI: 10.1016/j.aej.2020.10.020.
  • A. A. Arani and H. Aberoumand, “Stagnation-point flow of Ag – CuO/water hybrid nanofluids over a permeable stretching/shrinking sheet with temporal stability analysis,” Powder Technol., vol. 380, pp. 152–163, 2021. DOI: 10.1016/j.powtec.2020.11.043.
  • N. S. Wahid, N. M. Arifin, N. S. Khashi’ie, I. Pop, N. Bachok, and M. E. H. Hafidzuddin, “Hybrid nanofluid stagnation point flow past a slip shrinking Riga plate,” Chinese J. Phys., vol. 78, pp. 180–193, 2022. DOI: 10.1016/j.cjph.2022.05.016.
  • W. S. W. Hussin, N. A. A. Nasir, and A. Ishak, “The effects of slip and radiation on stagnation point flow and heat transfer past an exponentially stretching/shrinking riga plate,” In AIP Conference Proceedings (Vol. 2423, pp. 020008). AIP Publishing LLC, 2021.
  • A. Pantokratoras and E. Magyari, “EMHD free-convection boundary-layer flow from a Riga-plate,” J. Eng. Math., vol. 64, no. 3, pp. 303–315, 2009. DOI: 10.1007/s10665-008-9259-6.
  • I. Waini, A. Ishak, and I. Pop, “Hybrid nanofluid flow and heat transfer past a permeable stretching/shrinking surface with a convective boundary condition,” Int. J. Phys.: Conf. Series, vol. 1366, pp. 012022, 2019.
  • M. Ramzan, N. Shahmir, H. A. S. Ghazwani, K. S. Nisar, F. M. Alharbi, and I. S. Yahia, “Hydrodynamic and heat transfer analysis of dissimilar shaped nanoparticles-based hybrid nanofluids in a rotating frame with convective boundary condition,” Sci. Rep., vol. 12, no. 1, pp. 1–17, 2022. DOI: 10.1038/s41598-021-04173-z.
  • L. Yan, et al., “Dual solutions and stability analysis of magnetized hybrid nanofluid with joule heating and multiple slip conditions,” Processes, vol. 8, no. 3, pp. 332, 2020. DOI: 10.3390/pr8030332.
  • S. Rosseland, Astrophysik Und Atom-Theoretische Grundlagen. Berlin: Springer Verlag, 1931, pp. 41–44.
  • K. Thriveni and B. Mahanthesh, “Optimization and sensitivity analysis of heat transport of hybrid nano liquid in an annulus with quadratic Boussinesq approximation and quadratic thermal radiation,” Eur. Phy. J. Plus, vol. 135, no. 6, pp. 1–22, 2020.
  • S. Parvin, S. S. P. I. Mohamed, N. M. Arifin, and F. M. Ali, “The inclined factors of magnetic field and shrinking sheet in casson fluid flow,” Heat Mass Transfer. Symmetry, vol. 13, no. 3, pp. 373, 2021. DOI: 10.3390/sym13030373.
  • D. Srinivasacharya and P. Jagadeeshwar, “Effect of Joule heating on the flow over an exponentially stretching sheet with convective thermal condition,” Math Sci., vol. 13, no. 3, pp. 201–211, 2019. DOI: 10.1007/s40096-019-0290-8.
  • S. Ghosh and S. Mukhopadhyay, “Stability analysis for model-based study of nanofluid flow over an exponentially shrinking permeable sheet in presence of slip,” Neural Comput & Appl., vol. 32, no. 11, pp. 7201–7211, 2020. DOI: 10.1007/s00521-019-04221-w.
  • I. Waini, A. Ishak, and I. Pop, “Radiative and magnetohydrodynamic micropolar hybrid nanofluid flow over a shrinking sheet with Joule heating and viscous dissipation effects,” Neural Comput & Applic., vol. 34, no. 5, pp. 3783–3794, 2022. DOI: 10.1007/s00521-021-06640-0.
  • W. Ibrahim and S. Bandar, “MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip boundary conditions,” Computers & Fluids, vol. 75, pp. 1–10, 2013. DOI: 10.1016/j.compfluid.2013.01.014.
  • T. Hayat, M. Qasim and S. Mesloub, “MHD flow and heat transfer over permeable stretching sheet with slip conditions,” Int. J. Numer. Meth. Fluids, vol. 66, no. 8, pp. 963–975, 2011. DOI: 10.1002/fld.2294.
  • N. S. Wahid, N. M. Arifin, N. S. Khashiie and I. Pop, “Hybrid nanofluid slip flow over an exponentially stretching/shrinking permeable sheet with heat generation,” Mathematics, vol. 9, no. 1, pp. 30, 2020. DOI: 10.3390/math9010030.
  • J. H. Merkin, “On dual solutions occurring in mixed convection in a porous medium,” J. Eng. Math., vol. 20, no. 2, pp. 171–179, 1986. DOI: 10.1007/BF00042775.
  • P. D. Weidman, D. G. Kubitschek, and A. M. J. Davis, “The effect of transpiration on self-similar boundary layer flow over moving surfaces,” Int. J. Eng. Sci., vol. 44, no. 11–12, pp. 730–737, 2006. DOI: 10.1016/j.ijengsci.2006.04.005.
  • S. D. Harris, D. B. Ingham, and I. Pop, “Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium,” Transp. Porous Med., vol. 77, no. 2, pp. 267–285, 2009. DOI: 10.1007/s11242-008-9309-6.
  • G. Rasool, T. Zhang, A. J. Chamkha, A. Shafiq, I. Tlili and G. Shahzadi, “Entropy generation and consequences of binary chemical reaction on MHD Darcy-Forchheimer Williamson nanofluid flow over non-linearly stretching surface,” Entropy, vol. 22, no. 1, pp. 18, 2019. DOI: 10.3390/e22010018.
  • L. F. Shampine, L. F. Shampine, I. Gladwell, and S. Thompson, ODEs with MATLAB. New York, USA: Cambridge University Press, 2003. DOI: 10.1017/CBO9780511615542.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.