Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 14
73
Views
7
CrossRef citations to date
0
Altmetric
Articles

Bioconvective Carreau nanofluid flow with magnetic dipole, viscous, and ohmic dissipation effects subject to Arrhenius activation energy

ORCID Icon
Pages 2341-2366 | Received 01 Mar 2023, Accepted 21 May 2023, Published online: 16 Jun 2023

References

  • P. J. Carreau, “Rheological equations from molecular network theories,” Trans. Soc. Rheol., vol. 16, no. 1, pp. 99–127, 1972.
  • S. U. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” presented at the Proceedings, ASME International Mechanical Engineering Congress and Exposition, San Fransisco, USA, ASME Fluids Eng Div, 231/MD 66, 1995, pp. 99–105.
  • J. Buongiorno, “Convective transport in nanofluids,” pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • A. V. Kuznetsov and D. A. Nield, “Natural convective boundary-layer flow of a nanofluid past a vertical plate,” Int. J. Therm. Sci., vol. 49, no. 2, pp. 243–247, 2010. DOI: 10.1016/j.ijthermalsci.2009.07.015.
  • S. A. Shehzad, T. Hayat, and A. Alsaedi, “Influence of convective heat and mass conditions in MHD flow of nanofluid,” B. Pol. Acad. Sci. Tech. Sci., vol. 63, no. 2, pp. 465–474, 2015. DOI: 10.1515/bpasts-2015-0053.
  • K. Jabeen, M. Mushtaq, and R. M. Akram, “A comparative study of MHD flow analysis in a porous medium by using differential transformation method and variational iteration method,” J. Contemp. Appl. Math., vol. 9, no. 2, pp. 1–15, 2019.
  • K. Jabeen, M. Mushtaq, and R. M. Akram, “Analysis of the MHD boundary layer flow over a nonlinear stretching sheet in a porous medium using semianalytical approaches,” Math. Probl. Eng., vol. 2020, pp. 1–9, 2020. DOI: 10.1155/2020/3012854.
  • K. Jabeen, M. Mushtaq, and R. M. Akram Muntazir, “Analysis of MHD fluids around a linearly stretching sheet in porous media with thermophoresis, radiation, and chemical reaction,” Math. Probl. Eng., vol. 2020, pp. 1–14, 2020. DOI: 10.1155/2020/9685482.
  • R. M. A. Muntazir, M. Mushtaq, S. Shahzadi, and K. Jabeen, “MHD nanofluid flow around a permeable stretching sheet with thermal radiation and viscous dissipation,” Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci., vol. 236, no. 1, pp. 137–152, 2022. DOI: 10.1177/09544062211023094.
  • H. I. Andersson and O. A. Valnes, “Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole,” Acta Mech., vol. 128, no. 1-2, pp. 39–47, 1998. DOI: 10.1007/BF01463158.
  • C. Scherer and A. F. Neto, “Ferrofluids: Properties and applications,” Braz. J. Phys., vol. 35, no. 3a, pp. 718–727, 2005. DOI: 10.1590/S0103-97332005000400018.
  • L. S. R. Titus and A. Abraham, “Heat transfer in ferrofluid flow over a stretching sheet with radiation,” Int. J. Eng. Res. Technol., vol. 3, no. 6, pp. 2198–2203, 2014.
  • A. Zeeshan, A. Majeed, and R. Ellahi, “Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation,” J. Mol. Liq., vol. 215, pp. 549–554, 2016. DOI: 10.1016/j.molliq.2015.12.110.
  • A. Majeed, A. Zeeshan, and R. Ellahi, “Unsteady ferromagnetic liquid flow and heat transfer analysis over a stretching sheet with the effect of dipole and prescribed heat flux,” J. Mol. Liq., vol. 223, pp. 528–533, 2016. DOI: 10.1016/j.molliq.2016.07.145.
  • A. Zeeshan and A. Majeed, “Effect of magnetic dipole on radiative non-Darcian mixed convective flow over a stretching sheet in porous medium,” J. Nanofluids, vol. 5, no. 4, pp. 617–626, 2016. DOI: 10.1166/jon.2016.1237.
  • S. Afkhami and Y. Renardy, “Ferrofluids and magnetically guided superparamagnetic particles in flows: A review of simulations and modeling,” J. Eng. Math., vol. 107, no. 1, pp. 231–251, 2017. DOI: 10.1007/s10665-017-9931-9.
  • T. Hayat, I. Ullah, B. Ahmad, and A. Alsaedi, “Radiative flow of Carreau liquid in presence of Newtonian heating and chemical reaction,” Res. Phys., vol. 7, pp. 715–722, 2017. DOI: 10.1016/j.rinp.2017.01.019.
  • M. Waqas, M. I. Khan, T. Hayat, and A. Alsaedi, “Numerical simulation for magneto Carreau nanofluid model with thermal radiation: A revised model,” Comput. Methods Appl. Mech. Eng., vol. 324, pp. 640–653, 2017. DOI: 10.1016/j.cma.2017.06.012.
  • M. Khan, M. Irfan, W. A. Khan, and A. S. Alshomrani, “A new modeling for 3D Carreau fluid flow considering nonlinear thermal radiation,” Res. Phys., vol. 7, pp. 2692–2704, 2017. DOI: 10.1016/j.rinp.2017.07.024.
  • T. Hayat, S. Ahmad, M. I. Khan, and A. Alsaedi, “Exploring magnetic dipole contribution on radiative flow of ferromagnetic Williamson fluid,” Res. Phys., vol. 8, pp. 545–551, 2018. DOI: 10.1016/j.rinp.2017.11.040.
  • L. Dianchen, M. Ramzan, N. Huda, J. D. Chung, and U. Farooq, “Nonlinear radiation effect on MHD Carreau nanofluid flow over a radially stretching surface with zero mass flux at the surface,” Sci. Rep., vol. 8, no. 1, pp. 3709, 2018. DOI: 10.1038/s41598-018-22000-w.
  • M. Waqas, S. Jabeen, T. Hayat, M. I. Khan, and A. Alsaedi, “Modeling and analysis for magnetic dipole impact in nonlinear thermally radiating Carreau nanofluid flow subject to heat generation,” J. Magn. Magn. Mater., vol. 485, pp. 197–204, 2019. DOI: 10.1016/j.jmmm.2019.03.040.
  • T. Gul et al., “Magnetic dipole impact on the hybrid nanofluid flow over an extending surface,” Sci. Rep., vol. 10, no. 1, pp. 1–13, 2020. DOI: 10.1038/s41598-020-65298-1.
  • N. S. Khan et al., “A framework for the magnetic dipole effect on the thixotropic nanofluid flow past a continuous curved stretched surface,” Crystals, vol. 11, no. 6, pp. 645, 2021. DOI: 10.3390/cryst11060645.
  • F. Mallawi and M. Z. Ullah, “Conductivity and energy change in Carreau nanofluid flow along with magnetic dipole and Darcy-Forchheimer relation,” Alex. Eng. J., vol. 60, no. 4, pp. 3565–3575, 2021. DOI: 10.1016/j.aej.2021.02.019.
  • R. M. A. Muntazir, M. Mushtaq, S. Shahzadi, and K. Jabeen, “Influence of chemically reacting ferromagnetic Carreau nanofluid over a stretched sheet with magnetic dipole and viscous dissipation,” Math. Probl. Eng., vol. 2021, pp. 1–12, 2021. DOI: 10.1155/2021/6652522.
  • A. R. Bestman, “Radiative heat transfer to flow of a combustible mixture in a vertical pipe,” Int. J. Energy Res., vol. 15, no. 3, pp. 179–184, 1991. DOI: 10.1002/er.4440150305.
  • K. L. Hsiao, “To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method,” Energy, vol. 130, pp. 486–499, 2017. DOI: 10.1016/j.energy.2017.05.004.
  • M. Mustafa, J. A. Khan, T. Hayat, and A. Alsaedi, “Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy,” Int. J. Heat Mass Transf., vol. 108, pp. 1340–1346, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.029.
  • M. Z. Qureshi et al., “Morphological nanolayer impact on hybrid nanofluids flow due to dispersion of polymer/CNT matrix nanocomposite material,” MATH, vol. 8, no. 1, pp. 633–656, 2023. DOI: 10.3934/math.2023030.
  • G. K. Ramesh, J. K. Madhukesh, N. Ali Shah, and S.-J. Yook, “Flow of hybrid CNTs past a rotating sphere subjected to thermal radiation and thermophoretic particle deposition,” Alex. Eng. J., vol. 64, pp. 969–979, 2023. DOI: 10.1016/j.aej.2022.09.026.
  • M. Irfan, W. A. Khan, M. Khan, and M. Mudassar Gulzar, “Influence of Arrhenius activation energy in chemically reactive radiative flow of 3D Carreau nanofluid with nonlinear mixed convection,” J. Phys. Chem. Solids, vol. 125, pp. 141–152, 2019. DOI: 10.1016/j.jpcs.2018.10.016.
  • M. Irfan, M. S. Anwar, M. Rashid, M. Waqas, and W. A. Khan, “Arrhenius activation energy aspects in mixed convection Carreau nanofluid with nonlinear thermal radiation,” Appl. Nanosci., vol. 10, no. 12, pp. 4403–4413, 2020. DOI: 10.1007/s13204-020-01498-5.
  • T. Hayat, R. Riaz, A. Aziz, and A. Alsaedi, “Influence of Arrhenius activation energy in MHD flow of third grade nanofluid over a nonlinear stretching surface with convective heat and mass conditions,” Phys. A: Stat. Mech. Appl., vol. 549, pp. 124006, 2020. DOI: 10.1016/j.physa.2019.124006.
  • R. Sajjad, M. Mushtaq, S. Farid, K. Jabeen, and R. M. A. Muntazir, “Numerical simulations of magnetic dipole over a nonlinear radiative Eyring–Powell nanofluid considering viscous and ohmic dissipation effects,” Math. Probl. Eng., vol. 2021, pp. 1–16, 2021. DOI: 10.1155/2021/9776759.
  • S. M. H. Zadeh, S. A. M. Mehryan, M. A. Sheremet, M. Izadi, and M. Ghodrat, “Numerical study of mixed bio-convection associated with a micropolar fluid,” Therm. Sci. Eng. Prog., vol. 18, pp. 100539, 2020. DOI: 10.1016/j.tsep.2020.100539.
  • A. Zahra, S. U. Khan, H. Waqas, H. A. Nabwey, and I. Tlili, “Utilization of second order slip, activation energy and viscous dissipation consequences in thermally developed flow of third grade nanofluid with gyrotactic microorganisms,” Symmetry, vol. 12, no. 2, pp. 309, 2020. DOI: 10.3390/sym12020309.
  • A. Khan et al., “Bio-convective micropolar nanofluid flow over thin moving needle subject to Arrhenius activation energy, viscous dissipation and binary chemical reaction,” Case Stud. Therm. Eng., vol. 25, pp. 100989, Jun. 2021. DOI: 10.1016/j.csite.2021.100989.
  • K. Jabeen, M. Mushtaq, and R. M. Akram Muntazir, “Suction and injection impacts on Casson nanofluid with gyrotactic micro-organisms over a moving wedge,” J. Fluids Eng., vol. 144, no. 1, pp. 1–23, 2022. DOI: 10.1115/1.4051484.
  • R. M. Akram Muntazir, M. Mushtaq, and K. Jabeen, “A numerical study of MHD Carreau nanofluid flow with gyrotactic microorganisms over a plate, wedge, and stagnation point,” Math. Probl. Eng., vol. 2021, pp. 1–22, 2021. DOI: 10.1155/2021/5520780.
  • H. Waqas et al., “Significance of magnetic field and activation energy on the features of stratified mixed radiative-convective couple-stress nanofluid flows with motile microorganisms,” Alex. Eng. J., vol. 61, no. 2, pp. 1425–1436, 2022. DOI: 10.1016/j.aej.2021.06.047.
  • H. Waqas, M. Imran, and M. M. Bhatti, “Bioconvection aspects in non-Newtonian three-dimensional Carreau nanofluid flow with Cattaneo–Christov model and activation energy,” Eur. Phys. J. Spec. Top., vol. 230, no. 5, pp. 1317–1330, 2021. DOI: 10.1140/epjs/s11734-021-00046-8.
  • H. Waqas, U. Farooq, M. S. Alqarni, and T. Muhammad, “Numerical investigation for 3D bioconvection flow of CARREAU nanofluid with heat source/sink and motile microorganisms,” Alex. Eng. J., vol. 61, no. 3, pp. 2366–2375, 2022. DOI: 10.1016/j.aej.2021.06.089.
  • S. M. Yaseen, M. S. K. Rawat, N. A. Shah, M. Kumar, and S. M. Eldin, “Ternary hybrid nanofluid flow containing gyrotactic microorganisms over three different geometries with Cattaneo–Christov model,” Mathematics, vol. 11, no. 5, pp. 1237, 2023. DOI: 10.3390/math11051237.
  • A. Rauf, N. A. Shah, A. Mushtaq, and T. Botmart, “Heat transport and magnetohydrodynamic hybrid micropolar ferrofluid flow over a non-linearly stretching sheet,” MATH, vol. 8, no. 1, pp. 164–193, 2023. DOI: 10.3934/math.2023008.
  • Q. Lou et al., “Micropolar dusty fluid: Coriolis force effects on dynamics of MHD rotating fluid when Lorentz force is significant,” Mathematics, vol. 10, no. 15, pp. 2630, 2022. DOI: 10.3390/math10152630.
  • M. Z. Ashraf et al., “Insight into significance of bioconvection on mhd tangent hyperbolic nanofluid flow of irregular thickness across a slender elastic surface,” Mathematics, vol. 10, no. 15, pp. 2592, 2022. DOI: 10.3390/math10152592.
  • M. Azam, “Effects of Cattaneo-Christov heat flux and nonlinear thermal radiation on MHD Maxwell nanofluid with Arrhenius activation energy,” Case Stud. Therm. Eng., vol. 34, pp. 102048, Jun. 2022. DOI: 10.1016/j.csite.2022.102048.
  • M. Azam, “Non-linear radiative heat flux of Williamson nanofluid with gyrotactic microorganisms, activation energy and bioconvection,” Waves Random Complex Media, pp. 1–23, 2022. DOI: 10.1080/17455030.2022.2149883.
  • M. Azam, “Bioconvection and nonlinear thermal extrusion in development ofchemically reactive sutterby nano-material due to gyrotactic microorganisms,” Int. Commun. Heat Mass Transf., vol. 130, pp. 105820, 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105820.
  • M. Azam, F. Mabood, M. Khan, and M. Khan, “Bioconvection and activation energy dynamisms on radiative sutterby melting nanomaterial with gyrotactic microorganism,” Case Stud. Therm. Eng., vol. 30, pp. 101749, 2022. DOI: 10.1016/j.csite.2021.101749.
  • M. Azam, M. K. Nayak, W. A. Khan, and M. Khan, “Significance of bioconvection and variable thermal properties on dissipative Maxwell nanofluid due to gyrotactic microorganisms and partial slip,” Waves Random Complex Media, pp. 1–21, Sept. 2022. DOI: 10.1080/17455030.2022.2125180.
  • I. Muhammad, U. Farooq, T. Muhammad, S. U. Khan, and H. Waqas, “Bioconvection transport of Carreau nanofluid with magnetic dipole and nonlinear thermal radiation,” Case Stud. Therm. Eng., vol. 26, pp. 101129, 2021. DOI: 10.1016/j.csite.2021.101129.
  • S. Kushal, N. Vijay, and S. Kumar, “Significance of geothermal viscosity and heat generation/absorption on magnetic nanofluid flow and heat transfer,” Numer. Heat Transf. A: Appl., vol. 82, no. 3, pp. 70–81, 2022. DOI: 10.1080/10407782.2022.2066921.
  • M. M. Biswal, K. Swain, G. C. Dash, and K. Ojha, “Study of radiative magneto-non-Newtonian fluid flow over a nonlinearly elongating sheet with Soret and Dufour effects,” Numer. Heat Transf. A: Appl., vol. 83, no. 4, pp. 331–342, 2023. DOI: 10.1080/10407782.2022.2091379.
  • J. Hasnain and N. Abid, “Numerical investigation for thermal growth in water and engine oil-based ternary nanofluid using three different shaped nanoparticles over a linear and nonlinear stretching sheet,” Numer. Heat Transf > A: Appl., vol. 83, no. 12, pp. 1365–1376, 2023. DOI: 10.1080/10407782.2022.2104582.
  • K. Jabeen, M. Mushtaq, T. Mushtaq, and R. M. Akram Muntazir, “A numerical study of boundary layer flow of Williamson nanofluid in the presence of viscous dissipation, bioconvection, and activation energy,” Numer. Heat Transf. A: Appl., pp. 1–22, Mar. 2023.
  • A. V. Kuznetsov, “Thermo-bioconvection in a suspension of oxytactic bacteria,” Int. Commun. Heat Mass Transf., vol. 32, no. 8, pp. 991–999, 2005. DOI: 10.1016/j.icheatmasstransfer.2004.11.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.