Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 14
59
Views
6
CrossRef citations to date
0
Altmetric
Articles

Wall jet nanofluid flow with thermal energy and radiation in the presence of power-law

, , ORCID Icon, ORCID Icon &
Pages 2367-2379 | Received 17 Mar 2023, Accepted 31 May 2023, Published online: 22 Jun 2023

References

  • R. Ganvir, P. Walke, and V. Kriplani, “Heat transfer characteristics in nanofluid: a review,” Renew. Sustain. Energy Rev., vol. 75, pp. 451–460, 2017. DOI: 10.1016/j.rser.2016.11.010.
  • L. Zhang et al., “Applications of bioconvection for tiny particles due to two concentric cylinders when role of Lorentz force is significant,” PLoS One, vol. 17, no. 5, pp. e0265026, 2022. DOI: 10.1371/journal.pone.0265026.
  • R. Anandika, V. Puneeth, S. Manjunatha, S. A. Shehzad, and M. Arshad, “Exploration of thermophoresis and Brownian motion effect on the bio-convective flow of Newtonian fluid conveying tiny particles: aspects of multi-layer model,” Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., vol. 236, no. 19, pp. 10185–10199, 2022. DOI: 10.1177/09544062221098537.
  • M. Sheikholeslami, M. Gorji-Bandpy, D. Ganji, and S. Soleimani, “Natural convection heat transfer in a cavity with sinusoidal wall filled with CuO–water nanofluid in presence of magnetic field,” J. Taiwan Inst. Chem. Eng., vol. 45, no. 1, pp. 40–49, 2014. DOI: 10.1016/j.jtice.2013.04.019.
  • V. Puneeth, S. Manjunatha, and B. Gireesha, “Bioconvection in buoyancy induced flow of Williamson nanofluid over a riga plate–DTM–Padé approach,” J. Nanofluids, vol. 9, no. 4, pp. 269–281, 2020. vol. DOI: 10.1166/jon.2020.1760.
  • P. Kumar, R. Dwivedi, and K. Pandey, “Numerical investigation of thermo-hydraulic transport characteristics of laminar flow through partially filled porous wavy channel: effect of prandtl number,” Numer. Heat Transf. Part A Appl., pp. 1–20, 2022. DOI: 10.1080/10407782.2021.1969809.
  • M. Boussoufi and A. Sabeur, “Natural convective nanofluid flow characteristics with brownian motion effect in an annular space between confocal elliptic cylinders,” Numer. Heat Transf. Part A Appl., vol. 83, no. 10, pp. 1130–1145, 2023. DOI: 10.1080/10407782.2022.2102396.
  • M. Amiri and D. Mikielewicz, “Three-dimensional numerical investigation of hybrid nanofluids in chain microchannel under electrohydrodynamic actuator,” Numer. Heat Transf. Part A Appl., vol. 83, no. 10, pp. 1146–1173, 2023. DOI: 10.1080/10407782.2022.2150342.
  • G. Mandal and D. Pal, “Estimation of entropy generation and heat transfer of magnetohydrodynamic quadratic radiative Darcy–Forchheimer cross hybrid nanofluid (GO + Ag/kerosene oil) over a stretching sheet,” Numer. Heat Transf. Part A: Appl., pp. 1–24, 2023. DOI: 10.1080/10407782.2022.2163944.
  • A. Shafiq and S. Nadeem, “Thermal analysis in buoyancy driven flow of hybrid nanofluid subject to thermal radiation,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 3868–3876, 2022. DOI: 10.1080/01430750.2020.1861090.
  • M. N. Khan et al., “Irreversibility analysis of ellis hybrid nanofluid with surface catalyzed reaction and multiple slip effects on a horizontal porous stretching cylinder,” Arab. J. Chem., vol. 15, no. 12, pp. 104326, 2022. DOI: 10.1016/j.arabjc.2022.104326.
  • S. Nadeem, S. Ahmad, A. Issakhov, and I. M. Alarifi, “Mhd stagnation point flow of nanofluid with swcnt and mwcnt over a stretching surface driven by arrhenius kinetics,” Appl. Math. J. Chin. Univ., vol. 37, no. 3, pp. 366–382, 2022. DOI: 10.1007/s11766-022-3966-z.
  • L. Qin, S. Ahmad, M. N. Khan, N. A. Ahammad, F. Gamaoun, and A. M. Galal, “Thermal and solutal transport analysis of Blasius–Rayleigh–Stokes flow of hybrid nanofluid with convective boundary conditions,” Waves Random Complex Media, pp. 1–19, 2022. DOI: 10.1080/17455030.2022.2072018.
  • W. F. Xia et al., “Heat and mass transfer analysis of nonlinear mixed convective hybrid nanofluid flow with multiple slip boundary conditions,” Case Stud. Therm. Eng., vol. 32, pp. 101893, 2022. DOI: 10.1016/j.csite.2022.101893.
  • R. Ellahi, M. Hassan, and A. Zeeshan, “A study of heat transfer in power law nanofluid,” Therm. Sci., vol. 20, no. 6, pp. 2015–2026, 2016. DOI: 10.2298/TSCI150524129E.
  • W. A. Khan, R. Culham, and O. D. Makinde, “Hydromagnetic Blasius flow of power-law nanofluids over a convectively heated vertical plate,” Can. J. Chem. Eng., vol. 93, no. 10, pp. 1830–1837, 2015. DOI: 10.1002/cjce.22280.
  • L. Wang, C. Huang, X. Yang, Z. Chai, and B. Shi, “Effects of temperature-dependent properties on natural convection of power-law nanofluids in rectangular cavities with sinusoidal temperature distribution,” Int. J. Heat Mass Transf., vol. 128, pp. 688–699, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.09.007.
  • J. A. Ojeda and F. Mendez, “Fully developed temperature profile for a power-law laminar nanofluid flow in a circular duct subject to a uniform heat flux,” Nanosci. Technol. Int. J., vol. 13, no. 3, pp. 1–14, 2022. DOI: 10.1615/NanoSciTechnolIntJ.2022041913.
  • F. Selimefendigil and H. F. Öztop, “Thermal management for conjugate heat transfer of curved solid conductive panel coupled with different cooling systems using non-Newtonian power law nanofluid applicable to photovoltaic panel systems,” Int. J. Therm. Sci., vol. 173, pp. 107390, 2022. DOI: 10.1016/j.ijthermalsci.2021.107390.
  • B. Alkahtani, M. S. Abel, and E. H. Aly, “Analysis of fluid motion and heat transport on magnetohydrodynamic boundary layer past a vertical power law stretching sheet with hydrodynamic and thermal slip effects,” AIP Adv., vol. 5, no. 12, pp. 127228, 2015. DOI: 10.1063/1.4939136.
  • E. H. Aly and A. Ebaid, “Exact analysis for the effect of heat transfer on MHD and radiation Marangoni boundary layer nanofluid flow past a surface embedded in a porous medium,” J. Mol. Liq., vol. 215, pp. 625–639, 2016. DOI: 10.1016/j.molliq.2015.12.108.
  • E. H. Aly and H. M. Sayed, “Magnetohydrodynamic and thermal radiation effects on the boundary-layer flow due to a moving extensible surface with the velocity slip model: a comparative study of four nanofluids,” J. Magn. Magn. Mater., vol. 422, pp. 440–451, 2017. DOI: 10.1016/j.jmmm.2016.08.072.
  • E. H. Aly, “Dual exact solutions of graphene–water nanofluid flow over stretching/shrinking sheet with suction/injection and heat source/sink: critical values and regions with stability,” Powder Technol., vol. 342, pp. 528–544, 2019. DOI: 10.1016/j.powtec.2018.09.093.
  • E. H. Aly and I. Pop, “MHD flow and heat transfer near stagnation point over a stretching/shrinking surface with partial slip and viscous dissipation: hybrid nanofluid versus nanofluid,” Powder Technol., vol. 367, pp. 192–205, 2020. DOI: 10.1016/j.powtec.2020.03.030.
  • W. K. Usafzai, E. H. Aly, A. S. Alshomrani, and M. Zaka Ullah, “Multiple solutions for nanofluids flow and heat transfer in porous medium with velocity slip and temperature jump,” Int. Commun. Heat Mass Transf., vol. 131, pp. 105831, 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105831.
  • V. Puneeth et al., “Implementation of modified Buongiorno’s model for the investigation of chemically reacting rGO-Fe3O4–TiO2-H2O ternary nanofluid jet flow in the presence of bio-active mixers,” Chem. Phys. Lett., vol. 786, pp. 139194, 2022. DOI: 10.1016/j.cplett.2021.139194.
  • E. H. Aly, U. Mahabaleshwar, T. Anusha, W. Usafzai, and I. Pop, “Wall jet flow and heat transfer of a hybrid nanofluid subject to suction/injection with thermal radiation,” Therm. Sci. Eng. Prog., vol. 32, pp. 101294, 2022. DOI: 10.1016/j.tsep.2022.101294.
  • Y. Xie, C. Jiang, P. Zheng, Z. Cao, and M. Luo, “Ferrohydrodynamic and magnetohydrodynamic effects on jet flow and heat transfer of Fe3O4–H2O nanofluid in a microchannel subjected to permanent magnets,” Symmetry, vol. 13, no. 11, pp. 2051, 2021. DOI: 10.3390/sym13112051.
  • A. Jafarimoghaddam, M. Turkyilmazoglu, A. Roşca, and I. Pop, “Complete theory of the elastic wall jet: a new flow geometry with revisited two-phase nanofluids,” Eur. J. Mech. B/Fluids, vol. 86, pp. 25–36, 2021. DOI: 10.1016/j.euromechflu.2020.11.006.
  • E. H. Aly and I. Pop, “Merkin and Needham wall jet problem for hybrid nanofluids with thermal energy,” Eur. J. Mech. B/Fluids, vol. 83, pp. 195–204, 2020. DOI: 10.1016/j.euromechflu.2020.05.004.
  • V. Puneeth, M. I. Khan, M. Jameel, K. Geudri, and A. M. Galal, “The convective heat transfer analysis of the casson nanofluid jet flow under the influence of the movement of gyrotactic microorganisms,” J. Indian Chem. Soc., vol. 99, no. 9, pp. 100612, 2022. DOI: 10.1016/j.jics.2022.100612.
  • E. H. Aly, U. Mahabaleshwar, T. Anusha, and I. Pop, “Exact solutions for wall jet flow of hybrid nanofluid,” J. Nanofluids, vol. 11, no. 3, pp. 373–382, 2022. DOI: 10.1166/jon.2022.1845.
  • F. Selimefendigil and H. Öztop, “Pulsating nanofluids jet impingement cooling of a heated horizontal surface,” Int. J. Heat Mass Transf., vol. 69, pp. 54–65, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.10.010.
  • F. Selimefendigil and H. F. Öztop, “Jet impingement cooling and optimization study for a partly curved isothermal surface with CuO–water nanofluid,” Int. Commun. Heat Mass Transf., vol. 89, pp. 211–218, 2017. DOI: 10.1016/j.icheatmasstransfer.2017.10.007.
  • F. Selimefendigil and H. Öztop, “Al2O3–water nanofluid jet impingement cooling with magnetic field,” Heat Transf. Eng., vol. 44, no. 1, pp. 50–64, 2018.
  • F. Selimefendigil and H. F. Öztop, “Multijet impingement heat transfer under the combined effects of encapsulated-PCM and inclined magnetic field during nanoliquid convection,” Int. J. Heat Mass Transf., vol. 203, pp. 123764, 2023. DOI: 10.1016/j.ijheatmasstransfer.2022.123764.
  • C. Gutfinger and R. Shinnar, “Velocity distributions in two-dimensional laminar liquid-into-liquid jets in power-law fluids,” AIChE J., vol. 10, no. 5, pp. 631–639, 1964. DOI: 10.1002/aic.690100512.
  • N. A. Yacob and A. Ishak, “Flow and heat transfer of a power-law fluid over a permeable shrinking sheet,” Sains Malays., vol. 43, no. 3, pp. 491–496, 2014.
  • H. Xu and S.-J. Liao, “Laminar flow and heat transfer in the boundary-layer of non-Newtonian fluids over a stretching flat sheet,” Comput. Math. Appl., vol. 57, no. 9, pp. 1425–1431, 2009. DOI: 10.1016/j.camwa.2009.01.029.
  • R. C. Bataller, “Radiation effects in the Blasius flow,” Appl. Math. Comput., vol. 198, no. 1, pp. 333–338, 2008.
  • A. Ishak, “Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect,” Meccanica, vol. 45, no. 3, pp. 367–373, 2010. DOI: 10.1007/s11012-009-9257-4.
  • E. Magyari and A. Pantokratoras, “Note on the effect of thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of various boundary layer flows,” Int. Commun. Heat Mass Transf., vol. 38, no. 5, pp. 554–556, 2011. DOI: 10.1016/j.icheatmasstransfer.2011.03.006.
  • T. Hussain, S. Shehzad, A. Alsaedi, T. Hayat, and M. Ramzan, “Flow of Casson nanofluid with viscous dissipation and convective conditions: a mathematical model,” J. Cent. South Univ., vol. 22, no. 3, pp. 1132–1140, 2015. DOI: 10.1007/s11771-015-2625-4.
  • M. Mahmood, S. Asghar, and M. Hossain, “Transient mixed convection flow arising due to thermal and mass diffusion over porous sensor surface inside squeezing horizontal channel,” Appl. Math. Mech.-Engl. Ed., vol. 34, no. 1, pp. 97–112, 2013. DOI: 10.1007/s10483-013-1656-6.
  • W. Akaje and B. Olajuwon, “Impacts of nonlinear thermal radiation on a stagnation point of an aligned MHD Casson nanofluid flow with thompson and troian slip boundary condition,” J. Adv. Res. Exp. Fluid Mech. Heat Transf., vol. 6, no. 1, pp, pp. 1–15, 2021.
  • E. H. Aly, “Existence of the multiple exact solutions for nanofluid flow over a stretching/shrinking sheet embedded in a porous medium at the presence of magnetic field with electrical conductivity and thermal radiation effects,” Powder Technol., vol. 301, pp. 760–781, 2016. DOI: 10.1016/j.powtec.2016.06.024.
  • E. H. Aly and I. Pop, “Mhd flow and heat transfer over a permeable stretching/shrinking sheet in a hybrid nanofluid with a convective boundary condition,” HFF, vol. 29, no. 9, pp. 3012–3038, 2019. DOI: 10.1108/HFF-12-2018-0794.
  • E. H. Aly, A. V. Roşca, N. C. Roşca, and I. Pop, “Convective heat transfer of a hybrid nanofluid over a nonlinearly stretching surface with radiation effect,” Mathematics, vol. 9, no. 18, pp. 2220, 2021. DOI: 10.3390/math9182220.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.