Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 10
104
Views
1
CrossRef citations to date
0
Altmetric
Articles

Optimal characteristics of natural convection in a square porous-nanofluid-filled enclosure containing three tubes

ORCID Icon & ORCID Icon
Pages 1706-1729 | Received 14 Feb 2023, Accepted 13 Jun 2023, Published online: 28 Jun 2023

References

  • I. D. Al-Damook and J. Azzawi, “Magnetohydrodynamic natural convection of water in an L-shaped container filled with an aluminum metal foam,” J. Heat Transfer, vol. 145, no. 2, Nov. 2022. DOI: 10.1115/1.4055942.
  • ] S. Ostrach, “Natural convection in enclosures,” J. Heat Transfer, vol. 110, no. 4b, pp. 1175–1190, Nov. 1988. DOI: 10.1115/1.3250619.
  • T. Fusegi and J. M. Hyun, “Laminar and transitional natural convection in an enclosure with complex and realistic conditions,” Int. J. Heat Fluid Flow, vol. 15, no. 4, pp. 258–268, Aug. 1994. DOI: 10.1016/0142-727X(94)90011-6.
  • O. Aydin, A. Unal and T. Ayhan, “Natural convection in rectangular enclosures heated from one side and cooled from the ceiling,” Int. J. Heat Mass Transfer, vol. 42, no. 13, pp. 2345–2355, Jul. 1999. DOI: 10.1016/S0017-9310(98)00319-6.
  • S. Pandey, Y. G. Park and M. Y. Ha, “An exhaustive review of studies on natural convection in enclosures with and without internal bodies of various shapes,” Int. J. Heat Mass Transfer, vol. 138, pp. 762–795, Aug. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.04.097.
  • E. J. Braga and M. J. S. de Lemos, “Laminar natural convection in cavities filled with circular and square rods,” Int. Commun. Heat Mass Transfer, vol. 32, no. 10, pp. 1289–1297, Nov. 2005. DOI: 10.1016/j.icheatmasstransfer.2005.07.014.
  • B. S. Kim, D. S. Lee, M. Y. Ha and H. S. Yoon, “A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations,” Int. J. Heat Mass Transfer, vol. 51, no. 7–8, pp. 1888–1906, Apr. 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.06.033.
  • H. S. Yoon, M. Y. Ha, B. S. Kim and D. H. Yu, “Effect of the position of a circular cylinder in a square enclosure on natural convection at Rayleigh number of 107,” Physics Fluids, vol. 21, no. 4, p. 047101, Apr. 2009. DOI: 10.1063/1.3112735.
  • J. M. Lee, M. Y. Ha and H. S. Yoon, “Natural convection in a square enclosure with a circular cylinder at different horizontal and diagonal locations,” Int. J. Heat Mass Transfer, vol. 53, no. 25–26, pp. 5905–5919, Dec. 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.07.043.
  • S. H. Hussain and A. K. Hussein, “Numerical investigation of natural convection phenomena in a uniformly heated circular cylinder immersed in square enclosure filled with air at different vertical locations,” Int. Commun. Heat Mass Transfer, vol. 37, no. 8, pp. 1115–1126, Oct. 2010. DOI: 10.1016/j.icheatmasstransfer.2010.05.016.
  • M. Sheikholeslami, M. Gorji-Bandpay and D. D. Ganji, “Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid,” Int. Commun. Heat Mass Transfer, vol. 39, no. 7, pp. 978–986, Aug. 2012. DOI: 10.1016/j.icheatmasstransfer.2012.05.020.
  • Y. G. Park, H. S. Yoon and M. Y. Ha, “Natural convection in square enclosure with hot and cold cylinders at different vertical locations,” Int. J. Heat Mass Transfer, vol. 55, no. 25–26, pp. 7911–7925, Dec. 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.08.012.
  • A. K. Hussein, “Computational analysis of natural convection in a parallelogrammic cavity with a hot concentric circular cylinder moving at different vertical locations,” Int. Commun. Heat Mass Transfer, vol. 46, pp. 126–133, Aug. 2013. DOI: 10.1016/j.icheatmasstransfer.2013.05.008.
  • M. Keshavarz Moraveji and M. Hejazian, “Natural convection in a rectangular enclosure containing an oval-shaped heat source and filled with Fe3O4/water nanofluid,” Int. Commun. Heat Mass Transfer, vol. 44, pp. 135–146, May 2013. DOI: 10.1016/j.icheatmasstransfer.2013.03.011.
  • C. Choi, S. Jeong, M. Y. Ha and H. S. Yoon, “Effect of a circular cylinder’s location on natural convection in a rhombus enclosure,” Int. J. Heat Mass Transfer, vol. 77, pp. 60–73, Oct. 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.04.071.
  • Y. G. Park, M. Y. Ha and J. Park, “Natural convection in a square enclosure with four circular cylinders positioned at different rectangular locations,” Int. J. Heat Mass Transfer, vol. 81, pp. 490–511, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.10.065.
  • M. Hatami and H. Safari, “Effect of inside heated cylinder on the natural convection heat transfer of nanofluids in a wavy-wall enclosure,” Int. J. Heat Mass Transfer, vol. 103, pp. 1053–1057, Dec. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.08.029.
  • H. W. Cho, Y. M. Seo, G. S. Mun, M. Y. Ha and Y. G. Park, “The effect of instability flow for two-dimensional natural convection in a square enclosure with different arrays of two inner cylinders,” Int. J. Heat Mass Transfer, vol. 114, pp. 307–317, Nov. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.080.
  • S. Pandey, P. S. Jakkareddy, Y. M. Seo and M. Y. Ha, “Direct numerical simulation of natural convection between an enclosure and multiple circular cylinders: an influence of horizontal arrangement of cylinders,” Case Stud. Thermal Engineering, vol. 36, pp. 102205, Aug. 2022. DOI: 10.1016/j.csite.2022.102205.
  • Z.-T. Yu, L.-W. Fan, Y.-C. Hu and K.-F. Cen, “Prandtl number dependence of laminar natural convection heat transfer in a horizontal cylindrical enclosure with an inner coaxial triangular cylinder,” Int. J. Heat Mass Transfer, vol. 53, no. 7–8, pp. 1333–1340, Mar. 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.12.027.
  • M. Sheikholeslami, M. Gorji-Bandpy, D. D. Ganji, S. Soleimani and S. M. Seyyedi, “Natural convection of nanofluids in an enclosure between a circular and a sinusoidal cylinder in the presence of magnetic field,” Int. Commun. Heat Mass Transfer, vol. 39, no. 9, pp. 1435–1443, Nov. 2012. DOI: 10.1016/j.icheatmasstransfer.2012.07.026.
  • M. Sheikholeslami, M. Gorji-Bandpy and K. Vajravelu, “Lattice Boltzmann simulation of magnetohydrodynamic natural convection heat transfer of Al2O3–water nanofluid in a horizontal cylindrical enclosure with an inner triangular cylinder,” Int. J. Heat Mass Transfer, vol. 80, pp. 16–25, Jan. 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.08.090.
  • M. Sheikholeslami, T. Hayat and A. Alsaedi, “On simulation of nanofluid radiation and natural convection in an enclosure with elliptical cylinders,” Int. J. Heat Mass Transfer, vol. 115, pp. 981–991, Dec. 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.07.119.
  • A. M. Aly and Z. A. S. Raizah, “Mixed convection in an inclined nanofluid filled-cavity saturated with a partially layered porous medium,” J. Therm. Sci. Eng. Appl., vol. 11, no. 4, p. 041002, 2019. DOI: 10.1115/1.4042352.
  • Z. A. S. Raizah and A. M. Aly, “ISPH method for MHD double-diffusive natural convection of a nanofluid within cavity containing open pipes,” HFF, vol. 30, no. 7, pp. 3607–3634, 2019. DOI: 10.1108/HFF-08-2019-0658.
  • B. A. I. Bendrer, A. Abderrahmane, S. E. Ahmed and Z. A. S. Raizah, “3D magnetic buoyancy-driven flow of hybrid nanofluids confined wavy cubic enclosures including multi-layers and heated obstacle,” Int. Commun. Heat Mass Transfer, vol. 126, pp. 105431, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105431.
  • A. M. Aly, Z. Raizah and N. Alsedais, “Heat/mass transfer of a rotated dual wavy shape in a nanofluid-filled cavity partially saturated by porous media,” Waves Random Complex Media, pp. 1–16, Jan. 2023. DOI: 10.1080/17455030.2023.2172476.
  • A. Al-Damook and I. D. J. Azzawi, “Multi-objective numerical optimum design of natural convection in different configurations of concentric horizontal annular pipes using different nanofluids,” Heat Mass Transfer, vol. 57, no. 9, pp. 1543–1557, Mar. 2021. DOI: 10.1007/s00231-021-03051-8.
  • A. Al-Damook and I. D. J. Azzawi, “Optimal hydro-thermal characteristics of a porous annular elliptic pipe using response surface method,” Int. Commun. Heat Mass Transfer, vol. 128, pp. 105632, Nov. 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105632.
  • I. D. J. Azzawi and A. Al-Damook, “Multi-objective optimum design of porous triangular chamber using RSM,” Int. Commun. Heat Mass Transfer, vol. 130, pp. 105774, Jan. 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105774.
  • W. H. Khalil, I. D. J. Azzawi and A. Al-Damook, “The optimisation of MHD free convection inside porous trapezoidal cavity with the wavy bottom wall using response surface method,” Int. Commun. Heat Mass Transfer, vol. 134, pp. 106035, May 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106035.
  • T. Tayebi, A. S. Dogonchi, A. J. Chamkha, M. B. Ben Hamida, S. El-Sapa and A. M. Galal, “Micropolar nanofluid thermal free convection and entropy generation through an inclined I-shaped enclosure with two hot cylinders,” Case Stud. Thermal Engin., vol. 31, pp. 101813, Mar. 2022. DOI: 10.1016/j.csite.2022.101813.
  • A. Mourad, A. Abderrahmane, O. Younis, R. Marzouki and A. Alazzam, “Numerical simulations of magnetohydrodynamics natural convection and entropy production in a porous annulus bounded by wavy cylinder and koch snowflake loaded with Cu–water nanofluid,” Micromachines, vol. 13, no. 2, pp. 182, Feb. 2022. DOI: 10.3390/mi13020182.
  • K. Al-Farhany, M. F. Al-Dawody, D. A. Hamzah, W. Al-Kouz and Z. Said, “Numerical investigation of natural convection on Al2O3–water porous enclosure partially heated with two fins attached to its hot wall: under the MHD effects,” Appl. Nanosci., vol. 13, no. 1, pp. 555–572, May 2021. DOI: 10.1007/s13204-021-01855-y.
  • Y. A. Çengel and J. M. Cimbala, Fluid Mechanics: Fundamentals and Applications. Singapore: McGraw-Hill Higher Education, 2010.
  • A. M. Fadhil, W. H. Khalil and A. Al-Damook, “The hydraulic-thermal performance of miniature compact heat sinks using SiO2-water nanofluids,” Heat Trans. Asian Res., vol. 48, no. 7, pp. 3101–3114, Jul. 2019. DOI: 10.1002/htj.21532.
  • C.-C. Chen, P.-C. Huang and H.-Y. Hwang, “Enhanced forced convective cooling of heat sources by metal-foam porous layers,” Int. J. Heat Mass Transfer, vol. 58, no. 1–2, pp. 356–373, Mar. 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.11.041.
  • J. E. Matsson, An Introduction to ANSYS Fluent 2020. Mission, KS, USA: SDC Publications, 2020.
  • R. Nciri, Y. Ali Rothan, F. Nasri and C. Ali, “Fe3O4-water nanofluid free convection within an inclined 2D rectangular enclosure heated by solar energy using finned absorber plate,” APPl. Sci., vol. 11, no. 2, pp. 486–486, Jan. 2021. DOI: 10.3390/app11020486.
  • A. H. Pordanjani, S. M. Vahedi, F. Rikhtegar and S. Wongwises, “Optimization and sensitivity analysis of magneto-hydrodynamic natural convection nanofluid flow inside a square enclosure using response surface methodology,” J. Therm. Anal. Calorim., vol. 135, no. 2, pp. 1031–1045, Aug. 2019. DOI: 10.1007/s10973-018-7652-6.
  • S. M. Vahedi, A. H. Pordanjani, S. Wongwises and M. Afrand, “On the role of enclosure side walls thickness and heater geometry in heat transfer enhancement of water–Al2O3 nanofluid in presence of a magnetic field,” J. Therm. Anal. Calorim., vol. 138, no. 1, pp. 679–696, Apr. 2019. DOI: 10.1007/s10973-019-08224-6.
  • W. M. Abed, A. Al-Damook and W. H. Khalil, “Convective heat transfer in an annulus of concentric and eccentric cylinders with an inner rotating cylinder,” IJHT, vol. 39, no. 1, pp. 61–72, Feb. 2021. DOI: 10.18280/ijht.390107.
  • A. H. Pordanjani, S. M. Vahedi, S. Aghakhani, M. Afrand, O. Mahian and L.-P. Wang, “Multivariate optimization and sensitivity analyses of relevant parameters on efficiency of scraped surface heat exchanger,” Appl. Therm. Eng., vol. 178, pp. 115445, Sep. 2020. DOI: 10.1016/j.applthermaleng.2020.115445.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.