Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 18
71
Views
7
CrossRef citations to date
0
Altmetric
Articles

Significance of radiation and chemical reaction on MHD heat transfer nanofluid flow over a nonlinearly porous stretching sheet with nonuniform heat source

ORCID Icon &
Pages 2940-2966 | Received 13 Apr 2023, Accepted 22 Jun 2023, Published online: 09 Jul 2023

References

  • L. J. Crane, “Flow past a stretching plate,” J. Appl. Math. Phys., vol. 21, no. 4, pp. 645–647, 1970. DOI: 10.1007/BF01587695.
  • R. Cortell, “Fluid flow and radiative nonlinear heat transfer over a stretching sheet,” J. King Saud Univ.-Sci., vol. 26, no. 2, pp. 161–167, 2014. DOI: 10.1016/j.jksus.2013.08.004.
  • K. V. Prasad, K. Vajravelu, and P. S. Datti, “The effects of variable fluid properties on the hydro-magnetic flow and heat transfer over a non-linearly stretching sheet,” Int. J. Therm. Sci., vol. 49, no. 3, pp. 603–610, 2010. DOI: 10.1016/j.ijthermalsci.2009.08.005.
  • M. H. M. Yasin, A. Ishak, and I. Pop, “MHD heat and mass transfer flow over a permeable stretching/shrinking sheet with radiation effect,” J. Magnet. Magnet. Mater., vol. 407, pp. 235–240, 2016. DOI: 10.1016/j.jmmm.2016.01.087.
  • H. R. Patel, S. D. Patel, and R. Darji, “Mathematical study of unsteady micropolar fluid flow due to non-linear stretched sheet in the presence of magnetic field,” Int. J. Thermofluids, vol. 16, pp. 100232, 2022. DOI: 10.1016/j.ijft.2022.100232.
  • R. R. Vaddemani, K. Raghunath, and O. Mopuri, “Characteristics of MHD Casson fluid past an inclined vertical porous plate,” Mater. Today: Proc., vol. 49, pp. 2136–2142, 2022. DOI: 10.1016/j.matpr.2021.08.328.
  • M. M. Nandeppanavar, K. Vajravelu, M. Subhas Abel, and M. N. Siddalingappa, “MHD flow and heat transfer over a stretching surface with variable thermal conductivity and partial slip,” Meccanica, vol. 48, no. 6, pp. 1451–1464, 2013. DOI: 10.1007/s11012-012-9677-4.
  • J. V. Ramana Reddy, K. A. Kumar, V. Sugunamma, and N. Sandeep, “Effect of cross diffusion on MHD non-Newtonian fluids flow past a stretching sheet with non-uniform heat source/sink: A comparative study,” Alex. Eng. J., vol. 57, no. 3, pp. 1829–1838, 2018. DOI: 10.1016/j.aej.2017.03.008.
  • H. R. Patel and S. D. Patel, “Heat and mass transfer in mixed convection MHD micropolar fluid flow due to non-linear stretched sheet in porous medium with non-uniform heat generation and absorption,” Waves Random Complex Media, pp. 1–31, 2022. DOI: 10.1080/17455030.2022.2044542.
  • K. Raghunath and R. Mohanaramana, “Hall, Soret, and rotational effects on unsteady MHD rotating flow of a second-grade fluid through a porous medium in the presence of chemical reaction and aligned magnetic field,” Int. Commun. Heat Mass Transf., vol. 137, pp. 106287, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106287.
  • S. Li et al., “Effects of activation energy and chemical reaction on unsteady MHD dissipative Darcy–Forchheimer squeezed flow of Casson fluid over horizontal channel,” Sci. Rep., vol. 13, no. 1, pp. 2666, 2023. DOI: 10.1038/s41598-023-29702-w.
  • H. R. Patel, “Thermal radiation effects on MHD flow with heat and mass transfer of micropolar fluid between two vertical walls,” Int. J. Ambient Energy, vol. 42, no. 11, pp. 1281–1296, 2021. DOI: 10.1080/01430750.2019.1594371.
  • O. T. Bafakeeh et al., “Hall current and Soret effects on unsteady MHD rotating flow of second-grade fluid through porous media under the influences of thermal radiation and chemical reactions,” Catalysts, vol. 12, no. 10, pp. 1233, 2022. DOI: 10.3390/catal12101233.
  • V. V. L. Deepthi et al., “Recent development of heat and mass transport in the presence of Hall, ion slip and thermo diffusion in radiative second grade material: Application of micromachines,” Micromachines, vol. 13, no. 10, pp. 1566, 2022. DOI: 10.3390/mi13101566.
  • K. Raghunath et al., “Hall and ion slip radiative flow of chemically reactive second grade through porous saturated space via perturbation approach,” Waves Random Complex Media, pp. 1–17, 2022. DOI: 10.1080/17455030.2022.2108555.
  • S. Mehdipour, “Effect of magnetic field on flow in a porous medium over a permeable stretching wall in the presence of thermal radiation and suction/injection,” IOSR-JM, vol. 7, no. 5, pp. 68–73, 2013. DOI: 10.9790/5728-0756873.
  • H. R. Patel, “Cross diffusion and heat generation effects on mixed convection stagnation point MHD Carreau fluid flow in a porous medium,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 4990–5005, 2022. DOI: 10.1080/01430750.2021.1931960.
  • H. R. Patel, “Soret and heat generation effects on unsteady MHD Casson fluid flow in porous medium,” Waves Random Complex Media, pp. 1–24, 2022. DOI: 10.1080/17455030.2022.2030500.
  • M. Turkyilmazoglu, “Analytical solutions to mixed convection MHD fluid flow induced by a nonlinearly deforming permeable surface,” Commun. Nonlinear Sci. Numer. Simul., vol. 63, pp. 373–379, 2018. DOI: 10.1016/j.cnsns.2018.04.002.
  • T. R. Mahapatra, D. Pal, and S. Mondal, “Mixed convection flow in an inclined enclosure under magnetic field with thermal radiation and heat generation,” Int. Commun. Heat Mass Transf., vol. 41, pp. 47–56, 2013. DOI: 10.1016/j.icheatmasstransfer.2012.10.028.
  • Y. S. Daniel, “MHD laminar flows and heat transfer adjacent to permeable stretching sheets with partial slip condition,” J. Adv. Mech. Eng., vol. 4, no. 1, pp. 1–15, 2017. DOI: 10.7726/jame.2017.1001.
  • K. G. Kumar, B. J. Gireesha, B. C. Prasannakumara, and O. D. Makinde, “Impact of chemical reaction on marangoni boundary layer flow of a Casson nano liquid in the presence of uniform heat source sink,” DF., vol. 11, pp. 22–32, 2017. DOI: 10.4028/www.scientific.net/DF.11.22.
  • T. Hayat, M. Waqas, M. I. Khan, and A. Alsaedi, “Impacts of constructive and destructive chemical reactions in magnetohydrodynamic (MHD) flow of jeffrey liquid due to nonlinear radially stretched surface,” J. Mol. Liq., vol. 225, pp. 302–310, 2017. DOI: 10.1016/j.molliq.2016.11.023.
  • S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” presented at the ASME Int. Mech. Eng. Congress. San Francisco, USA, ASME, FED, 231/MD, vol. 8, no. 66, 1995, pp. 99–105.
  • W. A. Khan and I. Pop, “Boundary-layer flow of a nanofluid past a stretching sheet,” Int. J. Heat Mass Transf., vol. 53, no. 1112, pp. 2477–2483, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.01.032.
  • A. Malvandi, F. Hedayati, and M. R. H. Nobari, “An analytical study on boundary layer flow and heat transfer of nanofluid induced by a non-linearly stretching sheet,” J. Appl. Fluid Mech., vol. 7, no. 2, pp. 375–384, 2014. DOI: 10.36884/jafm.7.02.20308.
  • M. Sheikholeslami, S. Abelman, and D. D. Ganji, “Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation,” Int. J. Heat Mass Transf., vol. 79, pp. 212–222, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.08.004.
  • P. K. Kameswaran, M. Narayana, P. Sibanda, and P. V. S. N. Murthy, “Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects,” Int. J. Heat Mass Transf., vol. 55, no. 25–26, pp. 7587–7595, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.07.065.
  • F. Mabood, W. A. Khan, and A. I. M. Ismail, “MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study,” J. Magnet. Magnet. Mater., vol. 374, pp. 569–576, 2015. DOI: 10.1016/j.ijheatmasstransfer.2012.07.065.
  • H. R. Patel and G. H. Nanda, “Study of parabolic motion effects on fractional order simulation for unsteady MHD nanofluid flow through porous medium,” Int. J. Ambient Energy, vol. 44, no. 1, pp. 1457–1469, 2023. DOI: 10.1080/01430750.2023.2176357.
  • H. Patel, A. Mittal, and T. Nagar, “Fractional order simulation for unsteady MHD nanofluid flow in porous medium with Soret and heat generation effects,” Heat Transf., vol. 52, no. 1, pp. 563–584, 2023. DOI: 10.1002/htj.22707.
  • R. Kodi et al., “Influence of MHD mixed convection flow for maxwell nanofluid through a vertical cone with porous material in the existence of variable heat conductivity and diffusion,” Case Stud. Therm. Eng., vol. 44, pp. 102875, 2023. DOI: 10.1016/j.csite.2023.102875.
  • Y. Suresh Kumar et al., “Numerical analysis of magnetohydrodynamics Casson nanofluid flow with activation energy, Hall current and thermal radiation,” Sci. Rep., vol. 13, no. 1, pp. 4021, 2023. DOI: 10.1038/s41598-023-28379-5.
  • N. Sandeep, C. Sulochana, and B. R. Kumar, “Flow and heat transfer in MHD dusty nanofluid past a stretching/shrinking surface with non-uniform heat source/sink,” Walailak J. Sci. Technol., vol. 14, no. 2, pp. 117–140, 2017.
  • D. Pal and G. Mandal, “Thermal radiation and MHD effects on boundary layer flow of micropolar nanofluid past a stretching sheet with non-uniform heat source/sink,” Int. J. Mech. Sci., vol. 126, pp. 308–318, 2017. DOI: 10.1016/j.ijmecsci.2016.12.023.
  • T. Hayat, S. Qayyum, A. Alsaedi, and A. Shafiq, “Inclined magnetic field and heat source/sink aspects in flow of nanofluid with nonlinear thermal radiation,” Int. J. Heat Mass Transf., vol. 103, pp. 99–107, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.06.055.
  • S. Naramgari and C. Sulochana, “MHD flow over a permeable stretching/shrinking sheet of a nanofluid with suction/injection,” Alex. Eng. J., vol. 55, no. 2, pp. 819–827, 2016. DOI: 10.1016/j.aej.2016.02.001.
  • N. A. Othman, N. A. Yacob, N. Bachok, A. Ishak, and I. Pop, “Mixed convection boundary-layer stagnation point flow past a vertical stretching/shrinking surface in a nanofluid,” Appl. Therm. Eng., vol. 115, pp. 1412–1417, 2017.
  • D. Pal, G. Mandal, and K. Vajravalu, “Soret and dufour effects on MHD convective – radiative heat and mass transfer of nanofluids over a vertical non-linear stretching/shrinking sheet,” Appl. Math. Comput., vol. 287–288, pp. 184–200, 2016. DOI: 10.1016/j.amc.2016.04.037.
  • H. R. Patel and N. Patel, “Study of fractional-order model on Casson blood flow in stenosed artery with magnetic field effect,” Waves Random Complex Media, pp. 1–19, 2023. DOI: 10.1080/17455030.2023.2185085.
  • E. H. Aly, “Existence of the multiple exact solutions for nanofluid flow over a stretching/ shrinking sheet embedded in a porous medium at the presence of magnetic field with electrical conductivity and thermal radiation effects,” Powder Technol., vol. 301, pp. 760–781, 2016. DOI: 10.1016/j.powtec.2016.06.024.
  • A. Tahmasebi, M. Mahdavi, and M. Ghalambaz, “Local thermal nonequilibrium conjugate natural convection heat transfer of nanofluids in a cavity partially filled with porous media using Buongiorno’s model,” Numer. Heat Transf. A: Appl., vol. 73, no. 4, pp. 254–276, 2018. DOI: 10.1080/10407782.2017.1422632.
  • Y. S. Daniel, Z. A. Aziz, Z. Ismail, and F. Salah, “Hydromagnetic slip flow of nanofluid with thermal stratification and convective heating,” Aust. J. Mech. Eng., vol. 18, no. 2, pp. 147–155, 2020. DOI: 10.1080/14484846.2018.1432330.
  • Y. S. Daniel, Z. A. Aziz, Z. Ismail, and F. Salah, “Impact of thermal radiation on electrical MHD flow of nanofluid over nonlinear stretching sheet with variable thickness,” Alex. Eng. J., vol. 57, no. 3, pp. 2187–2197, 2018. DOI: 10.1016/j.aej.2017.07.007.
  • M. M. Nandeppanavar, M. S. Abel, and M. C. Kemparaju, “Stagnation point flow, heat and mass transfer of MHD nanofluid due to porous stretching sheet through porous media with effect of thermal radiation,” J. Nanofluids, vol. 6, no. 1, pp. 38–47, 2017. DOI: 10.1166/jon.2017.1292.
  • S. Maatoug et al., “Variable chemical species and thermo-diffusion Darcy–Forchheimer squeezed flow of Jeffrey nanofluid in horizontal channel with viscous dissipation effects,” J. Indian Chem. Soc., vol. 100, no. 1, pp. 100831, 2023. DOI: 10.1016/j.jics.2022.100831.
  • K. Raghunath, “Study of heat and mass transfer of an unsteady magnetohydrodynamic (MHD) nanofluid flow past a vertical porous plate in the presence of chemical reaction, radiation and Soret effects,” J. Nanofluids, vol. 12, no. 3, pp. 767–776, 2023. DOI: 10.1166/jon.2023.1965.
  • Z. Mustafa, T. Javed, T. Hayat, and A. Alsaedi, “Unsteady MHD chemically reactive dissipative flow of nanofluid due to rotating cone,” Numer. Heat Transf. A: Appl., vol. 82, no. 8, pp. 441–454, 2022. DOI: 10.1080/10407782.2022.2079316.
  • Z. Yang, X. Luo, G. Wang, B. Guan, and H. Yang, “Numerical study on the effects of supercritical CO2-based nanofluid on heat transfer deterioration,” Numer. Heat Transf. A: Appl., vol. 82, no. 5, pp. 193–216, 2022. DOI: 10.1080/10407782.2022.2068880.
  • K. Sharma, N. Vijay, and S. Kumar, “Significance of geothermal viscosity and heat generation/absorption on magnetic nanofluid flow and heat transfer,” Numer. Heat Transf. A: Appl., vol. 82, no. 3, pp. 70–81, 2022. DOI: 10.1080/10407782.2022.2066921.
  • Y. Dharmendar Reddy, B. Shankar Goud, N. N. Reddy, and V. S. Rao, “Impact of porosity on two-dimensional unsteady MHD boundary layer heat and mass transfer stagnation point flow with radiation and viscous dissipation,” Numer. Heat Transf. A: Appl., pp. 1–19, 2023. DOI: 10.1080/10407782.2023.2198739.
  • N. Vijay and K. Sharma, “Entropy generation analysis in MHD hybrid nanofluid flow: Effect of thermal radiation and chemical reaction,” Numer. Heat Transf. B: Fund., vol. 84, no. 1, pp. 66–82, 2023. DOI: 10.1080/10407790.2023.2186989.
  • L. Panigrahi, J. P. Panda, and L. Khan, “Numerical analysis of entropy generation and induced magnetic field on unsteady stagnation flow with suction/injection,” Numer. Heat Transf. B: Fund., vol. 82, no. 3–4, pp. 95–111, 2022. DOI: 10.1080/10407790.2022.2068863.
  • M. M. Nandeppanavar, K. Vajravelu, M. S. Abel, and C.-O. Ng, “Heat transfer over a nonlinearly stretching sheet with non-uniform heat source and variable wall temperature,” Int. J. Heat Mass Transf., vol. 54, no. 23–24, pp. 4960–4965, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.07.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.