Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 18
83
Views
2
CrossRef citations to date
0
Altmetric
Articles

Heat transfer mechanism in vibrational turbulent Rayleigh–Bénard convection with rough plates

, , ORCID Icon, , &
Pages 2967-2981 | Received 18 Aug 2022, Accepted 22 Jun 2023, Published online: 18 Jul 2023

References

  • J. Marshall and F. Schott, “Open-ocean convection: observations, theory, and models,” Rev. Geophys., vol. 37, no. 1, pp. 1–64, Feb 1999. DOI: 10.1029/98RG02739.
  • A. Wirth and B. Barnier, “Tilted convective plumes in numerical experiments,” Ocean Model., vol. 12, no. 1-2, pp. 101–111, 2006. DOI: 10.1016/j.ocemod.2005.04.005.
  • G. Ahlers, S. Grossmann and D. Lohse, “Heat transfer and large-scale dynamics in turbulent Rayleigh–Bénard convection,” Rev. Mod. Phys., vol. 81, no. 2, pp. 503–537, Apr 2009. DOI: 10.1103/RevModPhys.81.503.
  • D. Lohse and K.-Q. Xia, “Small-scale properties of turbulent Rayleigh–Bénard convection,” Annu. Rev. Fluid Mech., vol. 42, no. 1, pp. 335–364, 2010. DOI: 10.1146/annurev.fluid.010908.165152.
  • F. Chillà and J. Schumacher, “New perspectives in turbulent Rayleigh-Bénard convection,” Eur. Phys. J. E Soft Matter, vol. 35, no. 7, pp. 58, 2012. DOI: 10.1140/epje/i2012-12058-1.
  • Q. Zhou, R. Stevens, K. Sugiyama, S. Grossmann, D. Lohse and K.-Q. Xia, “Prandtl–Blasius temperature and velocity boundary-layer profiles in turbulent Rayleigh–Bénard convection,” J. Fluid Mech., vol. 664, pp. 297–312, Sep 2010. DOI: 10.1017/S0022112010003824.
  • J. Salort and O. Liot, “Thermal boundary layer near roughness in turbulent Rayleigh-Bénard convection: flow structure and multi stability,” Phys. Fluids, vol. 26, no. 051112, pp. 1–18, Nov 2014. DOI: 10.1063/1.4862487.
  • S. Wagner and O. Shishkina, “Heat flux enhancement by regular surface roughness in turbulent thermal convection,” J. Fluid Mech., vol. 763, pp. 109–135, Dec 2015. DOI: 10.1017/jfm.2014.665.
  • V. Shevtsova, I. Ryzhkov, D. Melnikov, Y. Gaponenko and A. Mialdun, “Experimental and theoretical study of vibration-induced thermal convection in low gravity,” J. Fluid Mech., vol. 648, pp. 53–82, 2010. DOI: 10.1017/S0022112009993442.
  • H. Khallouf, G.-Z. Gershuni and A. Mojtabi, “Numerical study of two-dimensional thermo-vibrational convection in rectangular cavities,” Numer. Heat Transfer, vol. 27, no. 3, pp. 297–305, 1995. DOI: 10.1080/10407789508913701.
  • I. Cisse, G. Bardan and A. Mojtab, “Rayleigh-Bénard convective instability of a fluid under high-frequency vibration,” Int. J. Heat Mass Transfer, vol. 47, no. 19–20, pp. 4101–4112, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.05.002
  • Y.-Z. Zhang, C. Sun, Y. Bao and Q. Zhou, “How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh-Bénard convection,” J. Fluid Mech., vol. 836, no. R2, pp. 1–10, Oct 2018. DOI: 10.1017/jfm.2017.786.
  • S. Grossmann and D. Lohse, “Scaling in thermal convection: a unifying theory,” J. Fluid Mech., vol. 407, pp. 27–56, 2000. DOI: 10.1017/S0022112099007545.
  • S. M. Zen’kovskaya and I. B. Simonenko, “Effect of high-frequency vibration on convection initiation,” Fluid Dyn., vol. 1, no. 5, pp. 35–37, 1966. DOI: 10.1007/BF01022147.
  • G.-Z. Gershuni, E.-M. Zhukhovit and Y.-S. Yurkov, “Vibrational thermal convection in a rectangular cavity,” Fluid Dyn., vol. 17, no. 4, pp. 565–569, 1982. DOI: 10.1007/BF01090025.
  • R. Savino, R. Monti and M. Piccirillo, “Thermo-vibrational convection in a fluid cell,” Comp. Fluids, vol. 27, no. 8, pp. 923–939, 1998. DOI: 10.1016/S0045-7930(98)00015-2.
  • B.-F. Wang, Q. Zhou and C. Sun, “Vibration-induced boundary-layer destabilization achieves massive heat-transport enhancement,” Sci. Adv., vol. 6, no. 21, pp. 1–6, 2020. DOI: 10.1126/sciadv.aaz8239.
  • J.-Z. Wu, B.-F. Wang and Q. Zhou, “Massive heat transfer enhancement of Rayleigh-Bénard turbulence over rough surfaces and under horizontal vibration,” Acta Mech. Sin., vol. 38, no. 2, pp. 1–8, 2022. DOI: 10.1007/s10409-021-09042-x.
  • J. Schmalzl, M. Breuer, S. Wessling and U. Hansen, “On the validity of two-dimensional numerical approaches to time-dependent thermal convection,” Europhys. Lett., vol. 67, no. 3, pp. 390–396, Jun 2004. DOI: 10.1209/epl/i2003-10298-4.
  • E. Poel, R. Stevens and D. Lohse, “Comparison between two- and three-dimensional Rayleigh-Bénard convection,” J. Fluid Mech., vol. 736, pp. 177–194, Nov 2013. DOI: 10.1017/jfm.2013.488.
  • Y. Wei, P. Shen, Z. Wang, H. Liang and Y. Qian, “Time evolution features of entropy generation rate in turbulent Rayleigh-Bénard convection with mixed insulating and conducting boundary conditions,” Entropy, vol. 22, no. 6, pp. 672, 2020. DOI: 10.3390/e22060672.
  • T. Inamuro, M. Yoshino and F. Ogino, “A non-slip boundary condition for lattice Boltzmann simulations,” Phys. Fluids, vol. 7, no. 12, pp. 2928–2930, 1995. DOI: 10.1063/1.868766.
  • Z. Guo, C. Zheng and B. Shi, “Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method,” Chin. Phys., vol. 11, no. 4, pp. 366–374, Oct 2002. DOI: 10.1088/1009-1963/11/4/310.
  • Z.-D. Wang, J.-F. Yang, Y.-K. Wei and Y.-H. Qian, “A new extrapolation treatment for boundary conditions in lattice Boltzmann method,” Chin. Phys. Lett., vol. 30, no. 9, pp. 094703, Apr 2013. DOI: 10.1088/0256-307X/30/9/094703.
  • Y. Peng, C. Shu and Y.-T. Chew, “Simplified thermal lattice Boltzmann model for incompressible thermal flows,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys., vol. 68, no. 2 Pt 2, pp. 026701, Aug 2003. DOI: 10.1103/physreve.68.026701.
  • Y. Zhang, Q. Zhou and C. Sun, “Statistics of kinetic and thermal energy dissipation rates in two-dimensional turbulent Rayleigh–Bénard convection,” J. Fluid Mech., vol. 814, pp. 165–184, Feb 2017. DOI: 10.1017/jfm.2017.19.
  • S.-X. Guo, S.-Q. Zhou, L. Qu, X.-R. Cen, and Lu, Y. Z., “Evolution and statistics of thermal plumes in tilted turbulent convection,” Int. J. Heat Mass Transfer, vol. 111, pp. 933–942, Apr 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.04.039.
  • H.-D. Xi, S. Lam and K.-Q. Xia, “From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection,” J. Fluid Mech., vol. 503, pp. 47–56, Jan. 2004. DOI: 10.1017/S0022112004008079.
  • S.-D. Huang, M. Kaczorowski, R. Ni and K.-Q. Xia, “Confinement-induced heat transport enhancement in turbulent thermal convection,” Phys. Rev. Lett., vol. 111, no. 10, pp. 104501, 2013. DOI: 10.1103/physrevlett.111.104501.
  • M.-J. Tummers and M. Steunebrink, “Effect of surface roughness on heat transfer in Rayleigh-Bénard convection,” Int. J. Heat Mass Transfer, vol. 139, pp. 1056–1064, Jun 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.05.066.
  • S. Grossman and D. Lohse, “Fluctuations in turbulent Rayleigh-Benard convection: the role of plumes,” Phys. Fluids, vol. 16, no. 12, pp. 4462–4472, 2004. DOI: 10.1063/1.1807751.
  • Y. Wang, X. He and P. Tong, “Turbulent temperature fluctuations in a closed Rayleigh–Bénard convection cell,” J. Fluid Mech, vol. 874, pp. 263–284, May 2019. DOI: 10.1017/jfm.2019.405.
  • B.-L. Xu, Q. Wang, Z.-H. Wan, R. Yan and D.-J. Sun, “Heat transport enhancement and scaling law transition in two-dimensional Rayleigh-Bénard convection with rectangular-type roughness,” Int. J. Heat Mass Transfer, vol. 121, pp. 872–883, Jan 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.051.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.