Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 18
127
Views
9
CrossRef citations to date
0
Altmetric
Articles

Model-based comparison of hybrid nanofluid Darcy-Forchheimer flow subject to quadratic convection and frictional heating with multiple slip conditions

ORCID Icon, , , , &
Pages 3013-3033 | Received 27 Mar 2023, Accepted 26 Jun 2023, Published online: 04 Jul 2023

References

  • A. Al-Zubaidi, V. S. Sajja, R. Gadamsetty, G. R. Reddy, M. J. Babu, M. J and I. L. Animasaun, “Dynamics over an inclined surface when entropy generation, Ohmic Heating, and Lorentz force are significant: comparative analysis between water-copper nanofluid and water-copper-Iron (II, III) oxide hybrid nanofluid,” Waves Random Complex Media, pp. 1–23, 2022. DOI: 10.1080/17455030.2022.2089368.
  • M. Z. Ullah, “Radiative and Darcy-Forchheimer hybrid nanofluid flow over an inclined stretching surface due to nonlinear convection and homogeneous heterogeneous reactions,” Waves Random Complex Media, pp. 1–17, 2022. DOI: 10.1080/17455030.2022.2096944.
  • N. S. Wahid, N. M. Arifin, N. S. Khashi’ie and I. Pop, “Mixed convection MHD hybrid nanofluid over a shrinking permeable inclined plate with thermal radiation effect,” Alex Eng. J., vol. 66, pp. 769–783, 2023. DOI: 10.1016/j.aej.2022.10.075.
  • M. Sarfraz and M. Khan, “Thermodynamic irreversibility analysis of water conveying argentum and titania nanoparticles subject to inclined stretching surface,” Phys. Scr., vol. 98, no. 2, pp. 025205, 2023. DOI: 10.1088/1402-4896/acab92.
  • S. Alabdulhadi, S. Abu Bakar, A. Ishak, I. Waini and S. E. Ahmed, “Effect of buoyancy force on an unsteady thin film flow of Al2O3/water nanofluid over an inclined stretching sheet,” Mathematics, vol. 11, no. 3, pp. 739, 2023. DOI: 10.3390/mi13112019.
  • F. A. Soomro, M. Usman, S. El-Sapa, M. Hamid and R. U. Haq, “Numerical study of heat transfer performance of MHD Al2O3-Cu/water hybrid nanofluid flow over inclined surface,” Arch. Appl. Mech., vol. 92, no. 9, pp. 2757–2765, 2022. DOI: 10.1007/s00419-022-02214-1.
  • A. Dawar, S. Islam, Z. Shah and S. A. Lone, “A comparative analysis of the magnetized sodium alginate‐based hybrid nanofluid flows through cone, wedge, and plate,” ZAMM Z. fur Angew. Math. Mech., vol. 103, no. 1, pp. e202200128, 2023. DOI: 10.1080/17455030.2022.2089368.
  • N. Islam, et al., “Thermal efficiency appraisal of hybrid nanocomposite flow over an inclined rotating disk exposed to solar radiation with Arrhenius activation energy,” Alex. Eng. J., vol. 68, pp. 721–732, 2023. DOI: 10.1016/j.aej.2022.12.029.
  • M. Ramzan, H. Gul, H. A. S. Ghazwani, K. S. Nisar and C. A. Saleel, “Numerical appraisal of Yamada–Ota hybrid nanofluid flow over a cylindrical surface and a sheet with surface-catalyzed reaction using Keller box approximations,” Int. J. Mod. Phys. B, vol. 37, no. 01, pp. 2350002, 2023. DOI: 10.1142/S0217979223500029.
  • A. M. Rashad, M. A. Nafe and D. A. Eisa, “Heat generation and thermal radiation impacts on flow of magnetic eyring–powell hybrid nanofluid in a porous medium,” Arab J. Sci. Eng., vol. 48, no. 1, pp. 939–952, 2023. DOI: 10.1007/s13369-022-07210-9.
  • A. M. Rashad, M. A. Nafe and D. A. Eisa, “VARIATION OF THERMAL CONDUCTIVITY AND HEAT ON MAGNETIC MAXWELL HYBRID NANOFLUID VISCOUS FLOW IN A POROUS SYSTEM WITH HIGHER-ORDER CHEMICAL REACT,” STRPM, vol. 14, no. 2, 2023. DOI: 10.1615/SpecialTopicsRevPorousMedia.2023045731.
  • A. Raza, et al., “Significance of free convection flow over an oscillating inclined plate induced by nanofluid with porous medium: the case of the Prabhakar fractional approach,” Micromachines, vol. 13, no. 11, pp. 2019, 2022. DOI: 10.3390/mi13112019.
  • A. Haritha, B. Vishali and C. Venkata Lakshmi, “Heat and mass transfer of MHD Jeffrey nanofluid flow through a porous media past an inclined plate with chemical reaction, radiation, and Soret effects,” Heat Trans, vol. 52, no. 2, pp. 1178–1197, 2023. DOI: 10.1016/j.aej.2022.10.075.
  • F. O. Mallawi and M. Z. Ullah, “Multiple slip impact on the Darcy–Forchheimer hybrid nano fluid flow due to quadratic convection past an inclined plan,” Mathematics, vol. 9, no. 22, pp. 2934, 2021. DOI: 10.3390/math9222934.
  • J. Wang, et al., “Computational analysis for bioconvection of microorganisms in prandtl nanofluid darcy-forchheimer flow across an inclined sheet,” Nanomaterials, vol. 12, no. 11, pp. 1791, 2022. DOI: 10.3390/nano12111791.
  • J. Cui, A. Jan, U. Farooq, M. Hussain and W. A. Khan, “Thermal analysis of radiative Darcy–Forchheimer nanofluid flow across an inclined stretching surface,” Nanomaterials, vol. 12, no. 23, pp. 4291, 2022. DOI: 10.3390/nano12234291.
  • M. Bilal, et al., “Darcy-forchheimer hybrid nano fluid flow with mixed convection past an inclined cylinder,” Comput. Mater. Contin, vol. 66, no. 2, pp. 2025–2039, 2021. DOI: 10.1016/j.aej.2022.12.029.
  • X. You, “Nanoparticle sphericity investigation of Cu-Al2O3-H2O hybrid nanofluid flows between inclined channels filled with a porous medium,” Nanomaterials, vol. 12, no. 15, pp. 2552, 2022. DOI: 10.3390/nano12152552.
  • M. Sankar, H. K. Swamy, Q. Al-Mdallal and A. Wakif, “Non-Darcy nanoliquid buoyant flow and entropy generation analysis in an inclined porous annulus: effect of source-sink arrangement,” Alex. Eng. J., vol. 68, pp. 239–261, 2023. DOI: 10.1016/j.aej.2023.01.016.
  • M. A. Abdelhafez, A. A. Awad, M. A. Nafe and D. A. Eisa, “Time-dependent viscous flow of higher-order reactive MHD Maxwell nanofluid with Joule heating in a porous regime,” Waves Random Complex Media, pp. 1–21, 2021. DOI: 10.1080/17455030.2021.1927237.
  • M. A. Abdelhafez, A. A. Awad, M. A. Nafe and D. A. Eisa, “Flow of mixed convection for radiative and magnetic hybrid nanofluid in a porous material with Joule heating,” Heat Trans, vol. 51, no. 4, pp. 2995–3017, 2022. DOI: 10.1002/htj.22433.
  • S. Das, R. N. Jana and O. D. Makinde, “Magnetohydrodynamic mixed convective slip flow over an inclined porous plate with viscous dissipation and Joule heating,” Alex. Eng. J., vol. 54, no. 2, pp. 251–261, 2015. DOI: 10.1016/j.aej.2015.03.003.
  • H. Xu, “Mixed convective flow of a hybrid nanofluid between two parallel inclined plates under wall-slip condition,” Appl. Math. Mech.-Engl. Ed., vol. 43, no. 1, pp. 113–126, 2022. DOI: 10.1007/s10483-021-2801-6.
  • B. Guo, et al., “Fractional-order simulations for heat and mass transfer analysis confined by elliptic inclined plate with slip effects: a comparative fractional analysis,” Case Stud. Therm. Eng, vol. 28, pp. 101359, 2021. DOI: 10.1016/j.csite.2021.101359.
  • B. J. Gireesha and L. Anitha, “Irreversibility analysis of micropolar nanofluid flow using Darcy–Forchheimer rule in an inclined microchannel with multiple slip effects,” Heat Trans., vol. 51, no. 6, pp. 5834–5856, 2022. DOI: 10.1002/htj.22571.
  • Y. D. Reddy, F. Mebarek-Oudina, B. S. Goud and A. I. Ismail, “Radiation, velocity and thermal slips effect toward MHD boundary layer flow through heat and mass transport of Williamson nanofluid with porous medium,” Arab J. Sci. Eng., vol. 47, no. 12, pp. 16355–16369, 2022. DOI: 10.1007/s13369-022-06825-2.
  • W. F. Xia, et al., “Heat and mass transfer analysis of nonlinear mixed convective hybrid nanofluid flow with multiple slip boundary conditions,” Case Stud. Therm. Eng., vol. 32, pp. 101893, 2022. DOI: 10.1016/j.csite.2022.101893.
  • S. Dey, S. Ghosh and S. Mukhopadhyay, “MHD mixed convection chemically reactive nanofluid flow over a vertical plate in presence of slips and zero nanoparticle flux,” Waves Random Complex Media, pp. 1–20, 2023. DOI: 10.1080/17455030.2022.2148014.
  • U. Khan, A. Zaib, A. B. Sakhinah and A. Ishak, “Hybrid nanofluid flow with quadratic velocity and thermal slip over a permeable stretching/shrinking surface,” Waves Random Complex Media, pp. 1–18, 2022. DOI: 10.1080/17455030.2022.2119302.
  • M. T. Akolade, “Thermophysical impact on the squeezing motion of non-Newtonian fluid with quadratic convection, velocity slip, and convective surface conditions between parallel disks,” Partial Differ. Equations Appl. Math., vol. 4, pp. 100056, 2021. DOI: 10.1016/j.padiff.2021.100056.
  • K. Thriveni and B. Mahanthesh, “Significance of variable fluid properties on hybrid nanoliquid flow in a micro-annulus with quadratic convection and quadratic thermal radiation: response surface methodology,” Int. Commun. Heat Mass Transf., vol. 124, pp. 105264, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105264.
  • B. Mahanthesh, I. L. Animasaun, M. Rahimi-Gorji and I. M. Alarifi, “Quadratic convective transport of dusty Casson and dusty Carreau fluids past a stretched surface with nonlinear thermal radiation, convective condition and non-uniform heat source/sink,” Phys. A: Stat. Mech. Appl., vol. 535, pp. 122471, 2019. DOI: 10.1016/j.physa.2019.122471.
  • N. A. L. Aladdin and N. Bachok, “Duality solutions in hydromagnetic flow of SWCNT-MWCNT/water hybrid nanofluid over vertical moving slender needle,” Mathematics, vol. 9, no. 22, pp. 2927, 2021. DOI: 10.3390/math9222927.
  • M. Nawaz, S. Rafiq, I. H. Qureshi and S. Saleem, “Combined effects of partial slip and variable diffusion coefficient on mass and heat transfer subjected to chemical reaction,” Phys. Scr., vol. 95, no. 3, p. 035222, 2020. DOI: 10.1088/1402-4896/ab534b.
  • T. A. Yusuf and J. A. Gbadeyan, “Entropy generation on maxwell fluid flow past an inclined stretching plate with slip and convective surface conditon: Darcy-forchheimer model,” NHC, vol. 26, pp. 62–83, 2019. DOI: 10.4028/www.scientific.net/NHC.26.62.
  • H. C. Brinkman, “The viscosity of concentrated suspensions and solutions,” J. Chem. Phys., vol. 20, no. 4, pp. 571–571, 1952. DOI: 10.1063/1.1700493.
  • M. Farbod and A. Ahangarpour, “A new modified Hamilton-crosser and nan models for thermal conductivity of different lengths carbon nanotubes water-based nanofluids,” J. Appl. Mech., vol. 8, no. 3, pp. 831–837, 2020. DOI: 10.22055/JACM.2020.32882.2095.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.