Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 18
140
Views
15
CrossRef citations to date
0
Altmetric
Articles

Optimizing energy generation in power-law nanofluid flow through curved arteries with gold nanoparticles

ORCID Icon, & ORCID Icon
Pages 3058-3090 | Received 20 Mar 2023, Accepted 26 Jun 2023, Published online: 18 Jul 2023

References

  • S. Das and S. Chakraborty, “Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid,” Anal. Chim. Acta, vol. 559, no. 1, pp. 15–24, 2006. DOI: 10.1016/j.aca.2005.11.046.
  • S. Chakraborty, “Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels,” Anal. Chim. Acta, vol. 605, no. 2, pp. 175–184, 2007. DOI: 10.1016/j.aca.2007.10.049.
  • C. Zhao, E. Zholkovskij, J. H. Masliyah, and C. Yang, “Analysis of electroosmotic flow of power-law fluids in a slit microchannel,” J. Colloid Interface Sci., vol. 326, no. 2, pp. 503–510, 2008. DOI: 10.1016/j.jcis.2008.06.028.
  • N. Nekoubin, “Electroosmotic flow of power-law fluids in curved rectangular microchannel with high zeta potentials,” J. Non-Newtonian Fluid Mech., vol. 260, pp. 54–68, 2018. DOI: 10.1016/j.jnnfm.2018.06.005.
  • Z. Ding, K. Tian, and Y. Jian, “Electrokinetic flow and energy conversion in a curved microtube,” Appl. Math. Mech. Engl. Ed., vol. 43, no. 8, pp. 1289–1306, 2022. DOI: 10.1007/s10483-022-2886-5.
  • D. Lu, S. Noreen, S. Waheed, and D. Tripathi, “Heat transfer applications in curved micro-channel driven by electroosmosis and peristaltic pumping,” J. Mech. Med. Biol., vol. 22, no. 5, pp. 2250030, 2022. DOI: 10.1142/S0219519422500300.
  • S. Noreen and S. Waheed, “Study of heat characteristics of electroosmotic mediator and peristaltic mechanism via porous microtube,” BioNanoScience, vol. 11, no. 2, pp. 476–488, 2021. DOI: 10.1007/s12668-020-00815-0.
  • A. Bandopadhyay and S. Chakraborty, “Steric-effect induced alterations in streaming potential and energy transfer efficiency of non-Newtonian fluids in narrow confinements,” Langmuir, vol. 27, no. 19, pp. 12243–12252, 2011. DOI: 10.1021/la202273e.
  • S. Sarkar, “Streaming-potential-mediated pressure-driven transport of Phan–Thien–Tanner fluids in a microchannel,” Phys. Rev. E, vol. 101, no. 5-1, pp. 053104, 2020. DOI: 10.1103/PhysRevE.101.053104.
  • Z. Xie and Y. Jian, “Electrokinetic energy conversion of nanofluids in MHD-based microtube,” Energy, vol. 212, pp. 118711, 2020. DOI: 10.1016/j.energy.2020.118711.
  • N. Li, G. Zhao, X. Gao, Y. Zhang, and Y. Jian, “The impacts of viscoelastic behavior on electrokinetic energy conversion for Jeffreys fluid in microtubes,” Nanomaterials, vol. 12, no. 19, pp. 3355, 2022. DOI: 10.3390/nano12193355.
  • A. Z. Wilczewska, K. Niemirowicz, K. H. Markiewicz, and H. Car, “Nanoparticles as drug delivery systems,” Pharmacol. Rep., vol. 64, no. 5, pp. 1020–1037, 2012. DOI: 10.1016/s1734-1140(12)70901-5.
  • S. Bamrungsap, et al., “Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system,” Nanomedicine, vol. 7, no. 8, pp. 1253–1271, 2012. DOI: 10.2217/nnm.12.87.
  • R. Weissleder, G. Elizondo, J. Wittenberg, C. Rabito, H. Bengele, and L. Josephson, “Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging,” Radiology, vol. 175, no. 2, pp. 489–493, 1990. DOI: 10.1148/radiology.175.2.2326474.
  • R. Duivenvoorden, et al., “A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation,” Nat. Commun., vol. 5, no. 1, pp. 1–12, 2014. DOI: 10.1038/ncomms4065.
  • J. S. Weinstein, et al., “Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review,” J. Cereb. Blood Flow Metab., vol. 30, no. 1, pp. 15–35, 2010. DOI: 10.1038/jcbfm.2009.192.
  • A. Zaman, N. Ali, and M. Sajjad, “Effects of nanoparticles (Cu, TiO2, Al2O3) on unsteady blood flow through a curved overlapping stenosed channel,” Math. Comput. Simul., vol. 156, pp. 279–293, 2019. DOI: 10.1016/j.matcom.2018.08.012.
  • F. Sultan, N. A. Khan, M. Qasim, and M. I. Afridi, “Numerical simulation of the flow of Nano-Eyring-Powell fluid through a curved artery with time-variant stenosis and aneurysm,” J. Soc. Rheol. Jpn., vol. 47, no. 2, pp. 75–85, 2019. DOI: 10.1678/rheology.47.75.
  • Poonam, B. K., Sharma, C. Kumawat, and K. Vafai, “Computational biomedical simulations of hybrid nanoparticles (Au-Al2O3/blood-mediated) transport in a stenosed and aneurysmal curved artery with heat and mass transfer: hematocrit dependent viscosity approach,” Chem. Phys. Lett., vol. 800, p. 139666, 2022. DOI: 10.1016/j.cplett.2022.139666.
  • Y. Haik, V. Pai, and C.-J. Chen, “Development of magnetic device for cell separation,” J. Magn. Magn. Mater., vol. 194, no. 1–3, pp. 254–261, 1999. DOI: 10.1016/S0304-8853(98)00559-9.
  • P. Voltairas, D. Fotiadis, and L. Michalis, “Hydrodynamics of magnetic drug targeting,” J. Biomech., vol. 35, no. 6, pp. 813–821, 2002. DOI: 10.1016/s0021-9290(02)00034-9.
  • M. F. Barnothy, Biological Effects of Magnetic Fields. New York: Plenum Press, 1964.
  • M. Freeman, A. Arrott, and J. Watson, “Magnetism in medicine,” J. Appl. Phys., vol. 31, no. 5, pp. S404–S405, 1960. DOI: 10.1063/1.1984765.
  • F. Issacci, N. Ghoniem, and I. Catton, “Magnetohydrodynamic flow in a curved pipe,” Phys. Fluids, vol. 31, no. 1, pp. 65–71, 1988. DOI: 10.1063/1.866578.
  • Y. Kinouchi, H. Yamaguchi, and T. Tenforde, “Theoretical analysis of magnetic field interactions with aortic blood flow,” Bioelectromagnetics, vol. 17, no. 1, pp. 21–32, 1996. DOI: 10.1002/(SICI)1521-186X(1996)17:1<21::AID-BEM3>3.0.CO;2-8.
  • K. S. Mekheimer, M. H. Haroun, and M. El Kot, “Induced magnetic field influences on blood flow through an anisotropically tapered elastic artery with overlapping stenosis in an annulus,” Can. J. Phys., vol. 89, no. 2, pp. 201–212, 2011. DOI: 10.1139/P10-103.
  • A. Farooq, M. Kahshan, S. Saleem, M. Rahimi-Gorji, and F. S. Al-Mubaddel, “Entropy production rate in ciliary induced flows through cylindrical tubules under the consequences of Hall effect,” J. Taiwan Inst. Chem. Eng., vol. 120, pp. 207–217, 2021. DOI: 10.1016/j.jtice.2021.03.024.
  • B. Sharma, C. Kumawat, and O. Makinde, “Hemodynamical analysis of MHD two phase blood flow through a curved permeable artery having variable viscosity with heat and mass transfer,” Biomech. Model. Mechanobiol., vol. 21, pp. 797–825, 2022.
  • S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” in Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion. Elsevier, 1983, pp. 54–73.
  • T. Dupont, R. P. Kendall, and H. Rachford Jr., “An approximate factorization procedure for solving self-adjoint elliptic difference equations,” SIAM J. Numer. Anal., vol. 5, no. 3, pp. 559–573, 1968. DOI: 10.1137/0705045.
  • A. Ahmed and S. Nadeem, “Shape effect of Cu-nanoparticles in unsteady flow through curved artery with catheterized stenosis,” Results Phys., vol. 7, pp. 677–689, 2017. DOI: 10.1016/j.rinp.2017.01.015.
  • J. H. Yun, M.-S. Chun, and H. W. Jung, “The geometry effect on steady electrokinetic flows in curved rectangular microchannels,” Phys. Fluids, vol. 22, no. 5, pp. 052004, 2010. DOI: 10.1063/1.3427572.
  • B. K. Sharma, A. K. Jha, and R. Chaudhary, “Hall effect on MHD mixed convective flow of a viscous incompressible fluid past a vertical porous plate immersed in porous medium with heat source/sink,” Rom. J. Phys., vol. 52, no. 5, pp. 487–503, 2007.
  • M. Corcione, “Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids,” Energy Conv. Manag., vol. 52, no. 1, pp. 789–793, 2011. DOI: 10.1016/j.enconman.2010.06.072.
  • X. Feng and D. W. Johnson, “Mass transfer in SiO2 nanofluids: a case against purported nanoparticle convection effects,” Int. J. Heat Mass Transf., vol. 55, no. 13–14, pp. 3447–3453, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.03.009.
  • U. Khanduri and B. K. Sharma, “Hall and ion slip effects on hybrid nanoparticles (Au-Go/blood) flow through a catheterized stenosed artery with thrombosis,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, p. 09544062221136710. DOI: 10.1177/09544062221136710.
  • S. Agrawal, G. Jayaraman, V. Srivastava, and K. Nigam, “Power law fluids in a circular curved tube. Part I. Laminar flow,” Polym. Plast. Technol. Eng., vol. 32, no. 6, pp. 595–614, 1993. DOI: 10.1080/03602559308021024.
  • M. Ayub, I. Shahzadi, and S. Nadeem, “A Ballon model analysis with Cu-blood medicated nanoparticles as drug agent through overlapped curved stenotic artery having compliant walls,” Microsyst. Technol., vol. 25, no. 8, pp. 2949–2962, 2019. DOI: 10.1007/s00542-018-4263-x.
  • P. A. Bakalis and P. M. Hatzikonstantinou, “Effect of curvature and magnetic field on MHD flow of a liquid metal in a curved annular duct,” Int. J. Numer. Methods Heat Fluid Flow, vol. 25, no. 8, pp. 1818–1833, 2015. DOI: 10.1108/HFF-12-2013-0363.
  • C. Kumawat, B. Sharma, Q. M. Al-Mdallal, and M. Rahimi-Gorji, “Entropy generation for MHD two phase blood flow through a curved permeable artery having variable viscosity with heat and mass transfer,” Int. Commun. Heat Mass Transf., vol. 133, pp. 105954, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105954.
  • D. Young, “Effect of a time-dependent stenosis on flow through a tube,” 1968.
  • P. Goswami and S. Chakraborty, “Energy transfer through streaming effects in time-periodic pressure-driven nanochannel flows with interfacial slip,” Langmuir, vol. 26, no. 1, pp. 581–590, 2010. DOI: 10.1021/la901209a.
  • R. Ponalagusamy and R. Tamil Selvi, “Influence of magnetic field and heat transfer on two-phase fluid model for oscillatory blood flow in an arterial stenosis,” Meccanica, vol. 50, no. 4, pp. 927–943, 2015. DOI: 10.1007/s11012-014-9990-1.
  • B. Tripathi, B. K. Sharma, and M. Sharma, “Modeling and analysis of MHD two-phase blood flow through a stenosed artery having temperature-dependent viscosity,” Eur. Phys. J. Plus, vol. 134, no. 9, pp. 466, 2019. DOI: 10.1140/epjp/i2019-12813-9.
  • A. Bejan, “Study of entropy generation in fundamental convective heat transfer,” 1979.
  • N. A. Khan, F. Naz, and F. Sultan, “Entropy generation analysis and effects of slip conditions on micropolar fluid flow due to a rotating disk,” Open Eng., vol. 7, no. 1, pp. 185–198, 2017. DOI: 10.1515/eng-2017-0025.
  • N. A. Khan, S. Aziz, and S. Ullah, “Entropy generation on MHD flow of Powell-Eyring fluid between radially stretching rotating disk with diffusion-thermo and thermo-diffusion effects,” Acta Mech. Autom., vol. 11, no. 1, pp. 20–32, 2017. DOI: 10.1515/ama-2017-0004.
  • I. Shahzadi and S. Ijaz, “On model of hybrid Casson nanomaterial considering endoscopy in a curved annulas: a comparative study,” Phys. Scr., vol. 94, no. 12, pp. 125215, 2019. DOI: 10.1088/1402-4896/ab34bb.
  • B. K. Sharma and C. Kumawat, “Impact of temperature dependent viscosity and thermal conductivity on MHD blood flow through a stretching surface with ohmic effect and chemical reaction,” Nonlinear Eng., vol. 10, no. 1, pp. 255–271, 2021. DOI: 10.1515/nleng-2021-0020.
  • B. Tripathi and B. Sharma, “Effect of variable viscosity on MHD inclined arterial blood flow with chemical reaction,” Int. J. Appl. Mech. Eng., vol. 23, no. 3, pp. 767–785, 2018. DOI: 10.2478/ijame-2018-0042.
  • Y. Gan, Continuum Mechanics - Progress in Fundamentals and Engineering Applications. London: IntechOpen, 2012.
  • K. S. Mekheimer, A. Zaher, and W. Hasona, “Entropy of AC electro-kinetics for blood mediated gold or copper nanoparticles as a drug agent for thermotherapy of oncology,” Chinese J. Phys., vol. 65, pp. 123–138, 2020. DOI: 10.1016/j.cjph.2020.02.020.
  • V. Narla and D. Tripathi, “Electroosmosis modulated transient blood flow in curved microvessels: study of a mathematical model,” Microvasc. Res., vol. 123, pp. 25–34, 2019. DOI: 10.1016/j.mvr.2018.11.012.
  • V. Narla, D. Tripathi, and O. A. Bég, “Electro-osmotic nanofluid flow in a curved microchannel,” Chinese J. Phys., vol. 67, pp. 544–558, 2020. DOI: 10.1016/j.cjph.2020.08.010.
  • N. K. Mishra, M. Sharma, B. Sharma, and U. Khanduri, “Soret and Dufour effects on MHD nanofluid flow of blood through a stenosed artery with variable viscosity,” Int. J. Mod. Phys. B, p. 2350266, 2023. DOI: 10.1142/S0217979223502661.
  • R. Gandhi, B. Sharma, C. Kumawat, and O. A. Bég, “Modeling and analysis of magnetic hybrid nanoparticle (Au-Al2O3/blood) based drug delivery through a bell-shaped occluded artery with joule heating, viscous dissipation and variable viscosity effects,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2022, p. 09544089221080273. DOI: 10.1177/09544089221080273.
  • B. Sharma, R. Gandhi, and M. Bhatti, “Entropy analysis of thermally radiating MHD slip flow of hybrid nanoparticles (Au-Al2O3/Blood) through a tapered multi-stenosed artery,” Chem. Phys. Lett., vol. 790, pp. 139348, 2022. DOI: 10.1016/j.cplett.2022.139348.
  • C. Kumawat, B. Sharma, and K. Mekheimer, “Mathematical analysis of two-phase blood flow through a stenosed curved artery with hematocrit and temperature dependent viscosity,” Phys. Scr., vol. 96, no. 12, pp. 125277, 2021. DOI: 10.1088/1402-4896/ac454a.
  • K. S. Mekheimer and M. El Kot, “Suspension model for blood flow through catheterized curved artery with time-variant overlapping stenosis,” Eng. Sci. Technol., vol. 18, no. 3, pp. 452–462, 2015. DOI: 10.1016/j.jestch.2015.03.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.