Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 18
142
Views
1
CrossRef citations to date
0
Altmetric
Articles

FreeFEM++ based heat transfer analysis of an electrically induced magnetic flow within the framework of micropolar continuum

ORCID Icon &
Pages 3110-3128 | Received 08 Mar 2023, Accepted 28 Jun 2023, Published online: 10 Jul 2023

References

  • T. Ariman, M. A. Turk and N. D. Sylvester, “Microcontinuum fluid mechanics—A review,” Int. J. Eng. Sci., vol. 11, no. 8, pp. 905–930, 1973. DOI: 10.1016/0020-7225(73)90038-4.
  • G. Łukaszewicz, “Selected Applications,” in Micropolar Fluids: Theory and Applications. Boston: Birkhäuser, 1999, pp. 181–235.
  • S. Sheri and M. D. Shamshuddin, “Finite element analysis on transient magnetohydrodynamic (MHD) free convective chemically reacting micropolar fluid flow past a vertical porous plate with Hall current and viscous dissipation,” Propulsion Power Res., vol. 7, no. 4, pp. 353–365, 2018. DOI: 10.1016/j.jppr.2018.11.003.
  • M. S. Khan and H. Kaneez, “Numerical computation of heat transfer enhancement through Cosserat hybrid nanofluids using continuous Galerkin–Petrov method,” Eur. Phys. J. Plus., vol. 135, no. 2, pp. 1–19, 2020. DOI: 10.1140/epjp/s13360-020-00226-w.
  • E. O. Fatunmbi and S. O. Salawu, “Analysis of hydromagnetic micropolar nanofluid flow past a nonlinear stretchable sheet and entropy generation with Navier slips,” Int. J. Model. Simulat., vol. 42, no. 3, pp. 359–369, 2022. DOI: 10.1080/02286203.2021.1905490.
  • M. Shamshuddin and W. Ibrahim, “Finite element numerical technique for magneto-micropolar nanofluid flow filled with chemically reactive Casson fluid between parallel plates subjected to rotatory system with electrical and Hall currents,” Int. J. Model. Simulat., vol. 42, no. 6, pp. 985–1004, 2022. DOI: 10.1080/02286203.2021.2012634.
  • E. Karvelas, G. Sofiadis, T. Papathanasiou and I. Sarris, “Effect of micropolar fluid properties on the blood flow in a human carotid model,” Fluids., vol. 5, no. 3, pp. 125, 2020. DOI: 10.3390/fluids5030125.
  • E. Cosserat and F. Cosserat, “Theory of deformable bodies,” Librairie Sci., vol. 151, pp. 1–24, 1909.
  • A. C. Eringen, “Microcontinuum field theories II,” Fluent Media, 3rd ed., 2001, pp. 83–105.
  • W. Nowacki., “The linear theory of micropolar elasticity,” in Micropolar Elasticity, W. Nowacki and W. Olszak, Eds. Udine, International Centre for Mechanical Sciences, 1974, pp. 1–43. DOI: 10.1007/978-3-7091-2920-3_1.
  • T. Kaiser, S. Forest and A. Menzel, “A finite element implementation of the stress gradient theory,” Meccanica, vol. 56, no. 5, pp. 1109–1128, 2021. DOI: 10.1007/s11012-020-01266-3.
  • M. S. Khan and K. Hackl, “Modeling of Microstructures in a Cosserat Continuum Using Relaxed Energies: analytical and Numerical Aspects,” in Variational Views in Mechanics, Mariano and M. Maria, Ed., Cham: Birkhäuser, 2021, pp. 57–87. DOI: 10.1007/978-3-030-90051-9_3.
  • H. S. Takhar, R. Bhargava, R. S. Agrawal and A. V. S. Balaji, “Finite element solution of micropolar fluid flow and heat transfer between two porous discs,” Int. J. Eng. Sci., vol. 38, no. 17, pp. 1907–1922, 2000. DOI: 10.1016/S0020-7225(00)00019-7.
  • I. Papautsky, J. Brazzle, T. Ameel and A. B. Frazier, “Laminar fluid behavior in microchannels using micropolar fluid theory,” Sens. Actuator. A Phys., vol. 73, no. 1–2, pp. 101–108, 1999. DOI: 10.1016/S0924-4247(98)00261-1.
  • A. Kambli and P. Dey, “A critical review on recent developments and applications of microchannels in the field of heat transfer and energy,” Heat Mass Transf., vol. 59, no. 5, 2023. DOI: 10.1007/s00231-023-03358-8.
  • Z. Feng, et al., “Combined influence of rectangular wire coil and twisted tape on flow and heat transfer characteristics in square mini-channels,” Int. J. Heat Mass Transf., vol. 205, pp. 123866, 2023. DOI: 10.1016/j.ijheatmasstransfer.2023.123866.
  • M. Amiri and D. Mikielewicz, “Three-dimensional numerical investigation of hybrid nanofluids in chain microchannel under electrohydrodynamic actuator,” Numer. Heat Transf. Part A: Appl., vol. 83, no. 10, pp. 1146–1173, 2023. DOI: 10.1080/10407782.2022.2150342.
  • S. Ghosh, S. Sarkar, R. Sivakumar and T. V. S. Sekhar, “Forced convection magnetohydrodynamic flow past a circular cylinder by considering the penetration of magnetic field inside it,” Numer. Heat Transf. Part A: Appl., vol. 76, no. 1, pp. 32–49, 2019. DOI: 10.1080/10407782.2018.1523600.
  • I. Mudawar, et al., “Heat transfer and interfacial flow physics of microgravity flow boiling in single-side-heated rectangular channel with subcooled inlet conditions – Experiments onboard the International Space Station,” Int. J. Heat Mass Transf., vol. 207, pp. 123998, 2023. DOI: 10.1016/j.ijheatmasstransfer.2023.123998.
  • J. V. R. Murthy, K. S. Sai and N. K. Bahali, “Steady flow of micropolar fluid in a rectangular channel under transverse magnetic field with suction,” AIP Adv., vol. 1, p. 032123, 2011. DOI: 10.1063/1.3624837.
  • Y. P. Kumar, S. Jaiswal, T. Asim and R. Mishra, “Influence of a magnetic field on the flow of a micropolar fluid sandwiched between two Newtonian fluid layers through a porous medium,” Eur. Phys. J. Plus., vol. 133, p. 247, 2018. DOI: 10.1140/epjp/i2018-12071-5.
  • A. Borrelli, G. Giantesio and M. C. Patria, “Magnetoconvection of a micropolar fluid in a vertical channel,” Int. J. Heat Mass Transf., vol. 80, pp. 614–625, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.09.031.
  • M. S. Khan and K. Hackl, “Modeling of microstructures in a Cosserat continuum using relaxed energies,” Variation. Views Mech., vol. 80, pp. 103–125, 2018. DOI: 10.1007/978-3-319-75940-1-6.
  • K. E. Aslani, B. Lefteris, E. Tzirtzilakis and E. S. Ioannis, “Micromagnetorotation of MHD micropolar flows,” Symmetry, vol. 12, no. 1, pp. 148, 2020. DOI: 10.3390/sym12010148.
  • I. V. Miroshnichenko, M. A. Sheremet, I. Pop and A. Ishak, “Convective heat transfer of micropolar fluid in a horizontal wavy channel under the local heating,” Int. J. Mech. Sci., vol. 128–129, pp. 541–549, 2017. DOI: 10.1016/j.ijmecsci.2017.05.013.
  • S. Dinarvand, S. Majid and A. Milad, “Micropolar fluid flow and heat transfer about a spinning cone with Hall current and Ohmic heating,” J. Mech. Eng. Sci., vol. 228, no. 11, pp. 1900–1912, 2014. DOI: 10.1177/0954406213512628.
  • H. Asadi, K. Javaherdeh and S. Ramezani, “Micropolar fluid model for blood flow through a stenosed artery,” Int. J. Appl. Mech., vol. 05, no. 04, pp. 1350043, 2013. DOI: 10.1142/S1758825113500439.
  • M. S. Khan, M. A. Memon, I. Khan and S. M. Eldin, “Finite element based direct and iterative approach to investigate a magneto-micropolar flow through a rectangular channel,” Alex. Eng. J., vol. 75, pp. 55-66, 2023. DOI: 10.1016/j.aej.2023.05.038.
  • Q.Ruibai, C. Fangfang, X. Linjie, Y. Jiawen and C. Xiaoping, “Effects of Reynolds number on the overall characteristics of flow and heat transfer in the long micro-tube with dimples,” Processes, vol. 10, no. 12, pp. 2696, 2022. DOI: 10.3390/pr10122696.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.