Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 1
175
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Theoretical analysis of convective transport over a slender body of revolution

ORCID Icon, , &
Pages 137-153 | Received 10 Nov 2022, Accepted 22 Jun 2023, Published online: 11 Sep 2023

Reference

  • L. G. Whitehead and G. S. Canetti, “Laminar boundary layer on solid of revolution,” Philos. Mag. Lett., vol. 41, no. 321, pp. 988–1000, 1950. DOI: 10.1080/14786445008561034.
  • C. L. Tien, “Heat transfer by laminar flow from a rotating cone,” J. Heat. Transf., vol. 82, no. 3, pp. 252–253, 1960. DOI: 10.1115/1.3679924.
  • J. P. Hartnett and E. C. Deland, “The influence of Prandtl number on the heat transfer from rotating non-isothermal disks and cones,” J. Heat Transf., vol. 83, no. 1, pp. 95–96, 1961. DOI: 10.1115/1.3680479.
  • R. G. Hering and R. J. Grosh, “Laminar free convection from a non-isothermal cone,” Int. J. Heat Mass Transf., vol. 5, no. 11, pp. 1059–1068, 1962. DOI: 10.1016/0017-9310(62)90059-5.
  • C. L. Tien, “Heat transfer by the induced flow about a rotating cone of non-uniform surface temperature,” Int. J. Heat Mass Transf., vol. 8, no. 3, pp. 411–418, 1965. DOI: 10.1016/0017-9310(65)90004-9.
  • A. A. Hayday, “On heat transfer from isothermal and non-isothermal spinning bodies of revolution,” J. Heat Transf., vol. 87, no. 4, pp. 445–452, 1965. DOI: 10.1115/1.3689136.
  • T. Y. Na and J. P. Chiou, “Laminar Natural convection over a frustum of a cone,” Appl. Sci. Res., vol. 35, no. 5-6, pp. 409–421, 1979. DOI: 10.1007/BF00420389.
  • C. Y. Wang, “Boundary layers on rotating cones, discs and axisymmetric surfaces with a concentrated heat source,” Acta Mech., vol. 81, no. 3-4, pp. 245–251, 1990. DOI: 10.1007/BF0117699.
  • L. Howarth, “On the solution of the laminar boundary layer equations,” Proc. R. Soc. Lond. A, vol. 164, no. 919, pp. 547–579, 1938. DOI: 10.1098/rspa.1938.0037.
  • N. Curle, “Development and separation of a laminar boundary layer with an exponentially increasing pressure gradient,” Q J Mech. Appl. Math., vol. 34, no. 3, pp. 383–396, 1981. DOI: 10.1093/qjmam/34.3.383.
  • G. L. Palec, “Numerical study of convective heat transfer over a rotating rough disk with uniform wall temperature,” Int Commun. Heat Mass Transf., vol. 16, pp. 107–13, 1989. DOI: 10.1016/0735-1933(89)90046-8.
  • T. C. Chiam, “A numerical solution for the laminar boundary layer flow with an exponentially decreasing velocity distribution,” Acta Mech., vol. 129, no. 3-4, pp. 255–261, 1998. DOI: 10.1007/BF01176750.
  • A. Mehmood and M. Usman, “TVC effects on flow separation on slender cylinders,” Thermophys. Aeromech., vol. 25, no. 4, pp. 507–513, 2018. DOI: 10.1134/S0869864318040042.
  • A. Mehmood, M. Usman and B. Weigand, “Heat and mass transfer phenomena due to a rotating non-isothermal wavy disk,” Int. J. Heat Mass Transf., vol. 129, pp. 96–102, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.09.038.
  • C. L. Tien and I. J. Tsuji, “A theoretical analysis of laminar forced flow and heat transfer about a rotating cone,” J. Heat Transf., vol. 87, no. 2, pp. 184–190, 1965. DOI: 10.1115/1.3689069.
  • J. C. Y. Koh and J. F. Price, “Non-similar boundary-layer heat transfer of a rotating cone in forced flow,” J. Heat Transf., vol. 89, no. 2, pp. 139–145, 1967. DOI: 10.1115/1.3614336.
  • T. Watanabe, “Laminar boundary layer flow over a cone with suction or injection,” Q. Appl. Math., vol. 46, no. 1, pp. 145–156, 1988. DOI: 10.1090/qam/934688.
  • C. Y. Cheng, “Free convection heat transfer from a non-isothermal permeable cone with suction and temperature-dependent viscosity,” J. Appl. Sci., vol. 18, no. 1, pp. 17–24, 2015. DOI: 10.6180/jase.2015.18.1.03.
  • S. S. Motsa, C. RamReddy and R. C. Venkata, “Non-similarity solution for soret effect on natural convection over the vertical frustum of a cone in a nanofluid using new bivariate pseudo-spectral local linearisation method,” Appl. Math. Comput., vol. 314, pp. 439–455, 2017. DOI: 10.1016/j.amc.2017.07.001.
  • I. Pop and T. Y. NA, “Natural convection of a Darcian fluid about a wavy cone,” Int. Commun. Heat Mass Transf., vol. 21, pp. 891–899, 1994. DOI: 10.1016/0735-1933(94)90042-6.
  • I. Pop and T. Y. Na, “Natural convection from a wavy cone,” Appl. Sci. Res., vol. 54, no. 2, pp. 125–136, 1995. DOI: 10.1007/BF00864369.
  • M. A. Hossain, M. S. Munir and I. Pop, “Natural convection flow of a viscous fluid with viscosity inversely proportional to linear function of temperature from a vertical wavy cone,” Int. J. Therm. Sci., vol. 40, no. 4, pp. 366–371, 2001. DOI: 10.1016/S1290-0729(01)01226-1.
  • A. Mehmood, S. Khan, M. S. Iqbal and A. S. Butt, “Computational analysis of entropy generation in mixed convection flow past a vertical wavy cone,” J. Therm. Anal. Calorim., vol. 147, no. 12, pp. 6983–6992, 2022. DOI: 10.1007/s10973-021-10979-w.
  • A. Mehmood and M. S. Iqbal, “Heat transfer analysis in natural convection flow of nanofluid past a wavy cone,” J. Mol. Liq., vol. 223, pp. 1178–1184, 2016. DOI: 10.1016/j.molliq.2016.09.029.
  • C. S. K. Raju, S. Saleem, S. U. Mamatha and I. Hussain, “Heat and mass transport phenomena of radiated slender body of three revolutions with saturated porous: Buongiorno’s model,” Int. J. Therm. Sci., vol. 132, pp. 309–315, 2018. DOI: 10.1016/j.ijthermalsci.2018.06.016.
  • C. S. K. Raju, S. Saleem, M. M. Al-Qarni and S. M. Upadhya, “Unsteady nonlinear convection on eyring–powell radiated flow with suspended graphene and dust particles,” Microsyst. Technol., vol. 25, no. 4, pp. 1321–1331, 2019. DOI: 10.1007/s00542-018-4076-y.
  • P. Ram, I. Pop, V. K. Joshi, C. S. K. Raju and V. Kumar, “Polarization force and geothermal viscosity driven unsteady bödewadt transport phenomenon over a ferrofluid saturated disk,” Phys. Scr., vol. 96, no. 1, pp. 015202, 2020. DOI: 10.1088/1402-4896/abc507.
  • C. S. K. Raju, N. A. Ahammad, K. Sajjan, N. A. Shah, S.-J. Yook and M. D. Kumar, “Nonlinear movements of axisymmetric ternary hybrid nanofluids in a thermally radiated expanding or contracting permeable Darcy Walls with different shapes and densities: simple linear regression,” Int. Commun. Heat Mass Transf., vol. 135, pp. 106110, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106110.
  • A. Mehmood, B. H. Shah and I. Raza, “Combined effects of surface sharpness and transverse curvature on thermal transport in separating flow region,” Phys. Scr., vol. 98, no. 3, pp. 035705, 2023. DOI: 10.1088/1402-4896/acb7b0.
  • T. Cebeci and P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer, New York: Springer-Verlag New York Inc, 1988.
  • A. Mehmood, B. H. Shah, M. Usman and I. Raza, “Analysis of laminar boundary-layer separation in retarded flow over bodies of revolution,” Can. J. Phys., vol. 100, no. 2, pp. 86–95, 2022. DOI: 10.1139/cjp-2021-02.
  • B. H. Shah, A. Mehmood, S. Munawar and N. Saleem, “Computational analysis of flow separation in a mixed convection MHD flow over a vertical paraboloid: case of externally retarded flow,” Int. J. Geom. Methods Mod., vol. 19, no. 14, pp. 2250217, 2022. DOI: 10.1142/S0219887822502176.
  • T. Cebeci and A. M. O. Smith, Analysis of Turbulent Boundary Layers, Academic Press, New York, 1974,

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.