Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 9
32
Views
0
CrossRef citations to date
0
Altmetric
Articles

HAM-based analysis of nonlinear convection of two-layer water and air-TiO2 flow model in a vertical channel

ORCID Icon &
Pages 1517-1534 | Received 09 May 2023, Accepted 22 Oct 2023, Published online: 07 Nov 2023

References

  • S. U. Choi, “Enhancing thermal conductivity of fluids with nanoparticle,” J. Dev. Applicat. Non-Newtonian Flows, vol. 66, pp. 99–105, 1995.
  • X. Q. Wang and A. S. Mujundar, “A review on nanofluids – Part I: theoretical and numerical investigations,” Braz. J. Chem. Eng., vol. 25, no. 4, pp. 613–630, 2008. DOI: 10.1590/S0104-66322008000400001.
  • S. K. Das, S. U. S. Choi, W. Yu, and T. Pardeep, Nanofluids: Science and Technology. Hoboken, NJ: John Wiley & Sons, 2007
  • A. V. Kuznetsov and D. A. Nield, “Natural convective boundary-layer flow of a nanofluid past a vertical plate,” Int. J. Therm. Sci., vol. 49, no. 2, pp. 243–247, 2010. DOI: 10.1016/j.ijthermalsci.2009.07.015.
  • U. Farooq and L. Zhi-Liang, “Nonlinear heat transfer in a two-layer flow with nanofluids by OHAM,” J. Heat Transf., vol. 136, no. 2, p. 021702, 2014. DOI: 10.1115/1.4025432.
  • M. M. Rashidi, S. Abelman, and N. F. Mehr, “Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid,” Int. J. Heat Mass Transf., vol. 62, pp. 515–525, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.03.004.
  • I. M. Mahbubul, R. Saidur, and M. A. Amalina, “Latest developments on the viscosity of nanofluids,” Int. J. Heat Mass Transf., vol. 55, no. 4, pp. 874–885, 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.10.021.
  • M. Sheikholeslami and R. Elahi, “Three-dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid,” Int. J. Heat Mass Transf., vol. 89, pp. 799–808, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.05.110.
  • M. Sheikholeslami, T. Hayat, and T. Alsaedi, “MHD free convection of Al2O3-water nanofluid considering thermal radiation: a numerical study,” Int. J. Heat Mass Trans., vol. 96, pp. 513–524, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.01.059.
  • M. Sheikholeslami, S. Abelman, and D. D. Ganji, “Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation,” Int. J. Heat Mass Transf., vol. 79, pp. 212–222, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.08.004.
  • J. Sui, L. Zheng, X. Zhang, and G. Chen, “Mixed convection heat transfers in power law fluids over a moving conveyor along an inclined plate,” Int. J. Heat Mass Transf., vol. 85, pp. 1023–1033, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.02.014.
  • H. Xu and I. Pop, “Fully developed mixed convection flow in a vertical channel filled with nanofluids,” Int. Commun. Heat Mass Transf., vol. 39, no. 8, pp. 1086–1092, 2012. DOI: 10.1016/j.icheatmasstransfer.2012.06.003.
  • H. Xu, T. Fan, and I. Pop, “Analysis of mixed convection flow of a nanofluid in a vertical channel with the Buongiorno mathematical model,” Int. Commun. Heat Mass Transf., vol. 44, pp. 15–22, 2013. DOI: 10.1016/j.icheatmasstransfer.2013.03.015.
  • A. Rajeev and B. Mahanthesh, “Multilayer flow and heat transport of nanoliquids with nonlinear Boussinesq approximation and viscous heating using differential transform method,” Heat Transf., vol. 50, no. 5, pp. 4309–4327, 2021. DOI: 10.1002/htj.22076.
  • R. Kumar, A. K. Sahoo, P. C. Mishra, and R. K. Das, “Performance assessment of air-water and TiO2 nanofluid mist spray cooling during turning hardened AISI D2 steel,” Indian J. Eng. Mater. Sci., vol. 26, pp. 235–253, 2019. http://nopr.niscpr.res.in/handle/123456789/51674.
  • K. F. Salama and M. Zafar, “Purification of ambient air by novel green plant with titanium dioxide nanoparticles,” Int. J. Prev. Med., vol. 13, pp. 67, 2022. DOI: 10.4103/ijpvm.IJPVM_586_20.
  • L. Zhang, T. Kanki, N. Sano, and A. Toyoda, “Development of TiO2 photocatalyst reaction for water purification,” Sep. Purif. Technol., vol. 31, no. 1, pp. 105–110, 2003. DOI: 10.1016/S1383-5866(02)00157-0.
  • M. I. Siddiqui, S. Munir, M. R. Heikal, G. de Sercey, A. R. A. Aziz, and S. C. Dass, “Simultaneous velocity measurements and the coupling effect of the liquid and gas phases in slug flow using PIV–LIF technique,” J. Vis., vol. 19, no. 1, pp. 103–114, 2016. DOI: 10.1007/s12650-015-0302-1.
  • C. H. Ao, S. C. Lee, C. L. Mak, and L. Y. Chan, “Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using TiO2: promotion versus inhibition effect of NO,” Appl. Catal. B Environ., vol. 42, no. 2, pp. 119–129, 2003. DOI: 10.1016/S0926-3373(02)00219-9.
  • D. C. Lu, U. Farooq, T. Hayat, M. M. Rashid, and M. Ramzan, “Computational analysis of three-layer fluid model including a nanomaterial layer,” Int. J. Heat Mass Transf., vol. 122, pp. 222–228, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.080.
  • R. A. V. Gorder, K. V. Prasad, and K. Vajravelu, “Convective heat transfer in the vertical channel flow of a clear fluid adjacent to a nanofluid layer: a two-fluid model,” Heat Mass Transf., vol. 48, no. 7, pp. 1247–1255, 2012. DOI: 10.1007/s00231-012-0973-2.
  • J. C. Umavathi, J. P. Kumar, and M. A. Sheremet, “Heat and mass transfer in a vertical double passage channel filled with electrically conducting fluid,” Phys. A Stat. Mech. Its Applicat., vol. 465, pp. 195–216, 2017. DOI: 10.1016/j.physa.2016.07.073.
  • S. Manjunatha, V. Puneeth, R. Anandika, and B. J. Gireesha, “Analysis of multilayer convective flow of a hybrid nanofluid in porous medium sandwiched between the layers of nanofluid,” Heat Trans., vol. 50, no. 8, pp. 8598–8616, 2021. DOI: 10.1002/htj.22292.
  • B. Li, W. Zhang, L. Zhu, and L. Zheng, “On mixed convection of two immiscible layers with a layer of non‐Newtonian nanofluid in a vertical channel,” Powder Technol., vol. 310, pp. 351–358, 2017. DOI: 10.1016/j.powtec.2017.01.054.
  • A. Amin and S. Munir, “Flow dynamics and convective transport analysis of two-layered dissipative Casson hybrid nanofluid flow in a vertical channel,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 203–210, 2023. DOI: 10.1177/09544062231170753.
  • Y. U. U. B. Turabi, A. Amin, S. Munir, and U. Farooq, “Investigating flow features and heat/mass transfer in two-layer vertical channel with Gr-TiO2 hybrid nanofluid under MHD and radiation effects,” J. Magn. Magn. Mater., vol. 578, pp. 170800, 2023. DOI: 10.1016/j.jmmm.2023.170800.
  • M. Devakar, A. Raje, and S. Hande, “Unsteady flow of couple stress fluid sandwiched between Newtonian fluids through a channel,” Z. Naturforsch. A., vol. 73, no. 7, pp. 629–637, 2018. DOI: 10.1515/zna-2017-0434.
  • K. Vajravelu, et al., “Nonlinear convection at a porous flat plate with application to heat transfer from a dike,” J. Math. Anal. Appl., vol. 277, no. 2, pp. 609–623, 2003. DOI: 10.1016/S0022-247X(02)00634-0.
  • D. Srinivasacharya, P. Naveen, and C. Ramreddy, “Nonlinear convective transport along an inclined plate in non‐Darcy porous medium saturated by a micropolar fluid with convective boundary condition,” Front. Heat Mass Transf., vol. 9, no. 1, pp. 1–10, 2017. DOI: 10.5098/hmt.9.35.
  • B. Mahanthesh, B. Gireesha, S. Shehzad, F. Abbasi, and R. S. R. Gorla, “Nonlinear three‐dimensional stretched row of an Oldroyd‐B fluid with convective condition, thermal radiation, and mixed convection,” Appl. Math. Mech. Engl. Ed., vol. 38, no. 7, pp. 969–980, 2017. DOI: 10.1007/s10483-017-2219-6.
  • B. Vasu, R. S. R. Gorla, O. A. Bég, P. Murthy, V. Prasad, and A. Kadir, “Un‐steady flow of a nanofluid over a sphere with nonlinear Boussinesq approximation,” J. Thermophys. Heat Transf., vol. 33, no. 2, pp. 343–355, 2019. DOI: 10.2514/1.T5516.
  • J. P. Kumar, J. C. Umavathi, A. J. Chamkha, and I. Pop, “Fully‐developed free‐convective flow of micropolar and viscous fluids in a vertical channel,” Appl. Math. Model., vol. 34, no. 5, pp. 1175–1186, 2010. DOI: 10.1016/j.apm.2009.08.007.
  • Z. Shah, A. Saeed, I. Khan, M. M. Selim, I. Ikramullah, and P. Kumam, “Numerical modeling on hybrid nanofluid (Fe3O4+MWCNT/H2O) migration considering MHD effect over a porous cylinder,” PLoS One, vol. 16, no. 7, e0251744, 2021. DOI: 10.1371/journal.pone.0251744.
  • Y. Ma, R. Mohebbi, M. M. Rashidi, and Z. Yang, “MHD convective heat transfer of Ag-MgO/water hybrid nanofluid in a channel with active heaters and coolers,” Int. J. Heat Mass Transf., vol. 137, pp. 714–726, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.169.
  • U. Farooq, D. Lu, S. Munir, M. Ramzan, M. Suleman, and S. Hussain, “MHD flow of Maxwell fluid with nanomaterials due to an exponentially stretching surface,” Sci. Rep., vol. 9, no. 1, pp. 7312, 2019. DOI: 10.1038/s41598-019-43549-0.
  • A. Gul, I. Khan, S. Shafie, A. Khalid, and A. Khan, “Heat transfer in MHD mixed convection flow of a ferrofluid along a vertical channel,” PLoS One, vol. 10, no. 11, pp. e0141213, 2015. DOI: 10.1371/journal.pone.0141213.
  • W. Aung and G. Worku, “Theory of fully developed combined convection including flow reversal,” ASME J. Heat Transfer, vol. 108, no. 2, pp. 485–488, 1986. DOI: 10.1115/1.3246958.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.