Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 18
92
Views
0
CrossRef citations to date
0
Altmetric
Articles

Impact of activation energy on magneto-bioconvection flow of oxytactic microorganisms with NePCM in complex shaped enclosure considering thermal radiations

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 2917-2939 | Received 25 Aug 2023, Accepted 01 Dec 2023, Published online: 21 Dec 2023

References

  • J. L. Kerrebrock, “Nonequilibrium ionization due to electron heating-i-theory,” Aiaa J, vol. 2, no. 6, pp. 1072–1080, 1964. Jun DOI: 10.2514/3.2496.
  • A. Sherman, “Magnetohydrodynamic channel flows with nonequilibrium ionization,” Phys. Fluids, vol. 9, no. 9, pp. 1782–1787, 1966. volSep DOI: 10.1063/1.1761933.
  • T. Murakami, Y. Okuno and H. Yamasaki, “Suppression of ionization instability in a magnetohydrodynamic plasma by coupling with a radio-frequency electromagnetic field,” Appl. Phys. Lett, vol. 86, no. 19, pp. 191502, May 2005. DOI: 10.1063/1.1926410.
  • C. Y. Soong, P. Y. Tzeng, D. C. Chiang and T. S. Sheu, “Numerical study on mode-transition of natural convection in differentially heated inclined enclosures,” Int. J. Heat Mass Transf, vol. 39, no. 14, pp. 2869–2882, 1996. Sep DOI: 10.1016/0017-9310(95)00378-9.
  • I. Vinogradov, L. Khezzar and D. Siginer, “Heat transfer of non-Newtonian dilatant power law fluids in square and rectangular cavities,” J. Appl. Fluid Mech, vol. 4, no. 3, pp. 37–42, 2012. Feb DOI: 10.36884/jafm.4.03.11932.
  • A. Karimipour, A. H. Nezhad, A. D’Orazio and E. Shirani, “The effects of inclination angle and Prandtl number on the mixed convection in the inclined lid driven cavity using lattice Boltzmann method,” J. Theor. Appl. Mech, vol. 51, no. 2, pp. 447–462, May 2013.
  • T. S. Cheng and W. H. Liu, “Effects of cavity inclination on mixed convection heat transfer in lid-driven cavity flows,” Comput. fluids, vol. 100, pp. 108–122, 2014. Sep DOI: 10.1016/j.compfluid.2014.05.004.
  • O. Aydin, A. Unal and T. Ayhan, “A numerical study on buoyancy-driven flow in an inclined square enclosure heated and cooled on adjacent walls,” Numer. Heat Transf.; A: appl, vol. 36, no. 6, pp. 585–599, 1999. Nov DOI: 10.1080/104077899274589.
  • O. Polat and E. Bilgen, “Laminar natural convection in inclined open shallow cavities,” Int. J. Therm. Sci, vol. 41, no. 4, pp. 360–368, 2002. Apr DOI: 10.1016/S1290-0729(02)01326-1.
  • Y. M. Chu, U. Khan, A. Zaib, S. H. Shah and M. Marin, “Numerical and computer simulations of cross-flow in the streamwise direction through a moving surface comprising the significant impacts of viscous dissipation and magnetic fields: stability analysis and dual solutions,” Math. Probl. Eng., Vol, vol. 2020, pp. 8542396, Sep. 2020. DOI: 10.1155/2020/8542396.
  • S. Rashidi, M. Dehghan, R. Ellahi, M. Riaz and M. T. Jamal-Abad, “Study of stream wise transverse magnetic fluid flow with heat transfer around an obstacle embedded in a porous medium,” J. Magn. Magn. Mater, vol. 378, pp. 128–137, 2015. Mar DOI: 10.1016/j.jmmm.2014.11.020.
  • S. U. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” 1995. Argonne National Lab., Oct.
  • R. L. Hamilton and O. K. Crosser, “Thermal conductivity of heterogeneous two-component systems,” Ind. Eng. Chem. Fund, vol. 1, no. 3, pp. 187–191, 1962. Aug DOI: 10.1021/i160003a005.
  • Y. Xuan and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” Int. J. Heat Mass Transf, vol. 43, no. 19, pp. 3701–3707, 2000. Oct DOI: 10.1016/S0017-9310(99)00369-5.
  • J. Boungiorno, “Convective transport in nanofluids,” J Heat Mass Transf, vol. 128, no. 3, pp. 240–250, 2006. Mar DOI: 10.1115/1.2150834.
  • S. Soleimani, M. Sheikholeslami, D. D. Ganji and M. Gorji-Bandpay, “Natural convection heat transfer in a nanofluid filled semi-annulus enclosure,” Int. Commun. Heat Mass Transf, vol. 39, no. 4, pp. 565–574, 2012. Apr DOI: 10.1016/j.icheatmasstransfer.2012.01.016.
  • M. M. Bhatti and A. Zeeshan, “Heat and mass transfer analysis on peristaltic flow of particle–fluid suspension with slip effects,” J. Mech. Med. Biol, vol. 17, no. 02, pp. 1750028, Mar. 2017. DOI: 10.1142/S0219519417500282.
  • A. Majeed, S. Rifaqat, A. Zeeshan, M. S. Alhodaly and F. Majeed Noori, “Impact of velocity slip and radiative magnetized Casson nanofluid with chemical reaction towards a nonlinear stretching sheet: three-stage Lobatto collocation scheme,” Int. J. Mod. Phys. B, vol. 37, no. 09, pp. 2350088, Apr. 2023. DOI: 10.1142/S0217979223500881.
  • J. Sarkar, P. Ghosh and A. Adil, “A review on hybrid nanofluids: recent research, development and applications,” Renew. Sust. Energ. Rev, vol. 43, pp. 164–177, Mar. 2015. DOI: 10.1016/j.rser.2014.11.023.
  • Ilyas, Khan, Wajaree, Weera, Abdullah, Mohamed Zeeshan, “Heat transfer analysis of Cu and Al2O3 dispersed in ethylene glycol as a base fluid over a stretchable permeable sheet of MHD thin-film flow”, Sci Repvol. 12, no. 1, pp. 8878, May 2022. DOI: 10.1038/s41598-022-12671-x.
  • M. M. Maskeen, A. Zeeshan, O. U. Mehmood and M. Hassan, “Heat transfer enhancement in hydromagnetic alumina–copper/water hybrid nanofluid flow over a stretching cylinder,” J Therm Anal Calorim, vol. 138, no. 2, pp. 1127–1136, 2019. Oct DOI: 10.1007/s10973-019-08304-7.
  • N. Acharya, R. Bag and P. K. Kundu, “Influence of Hall current on radiative nanofluid flow over a spinning disk: a hybrid approach,” Physica E Low Dimens. Syst. Nanostruct, vol. 111, pp. 103–112, 2019. Jul DOI: 10.1016/j.physe.2019.03.006.
  • M. Saqib, I. Khan and S. Shafie, “Application of fractional differential equations to heat transfer in hybrid nanofluid: modeling and solution via integral transforms,” Adv Differ Equ, vol. 2019, no. 1vol, pp. 52, 2019. DOI: 10.1186/s13662-019-1988-5.
  • I. Waini, A. Ishak and I. Pop, “Hybrid nanofluid flow and heat transfer over a nonlinear permeable stretching/shrinking surface,” HFF, vol. 29, no. 9, pp. 3110–3127, 2019. Sep DOI: 10.1108/HFF-01-2019-0057.
  • F. Haider, T. Hayat and A. Alsaedi, “Flow of hybrid nanofluid through Darcy-Forchheimer porous space with variable characteristics,” Alex. Eng. J, vol. 60, no. 3, pp. 3047–3056, 2021. Jun DOI: 10.1016/j.aej.2021.01.021.
  • A. I. Jaafar, A. Jamaludin, R. Nazar and I. Pop, “MHD Marangoni convection heat transfer of AgCu hybrid nanofluid under a stretching/shrinking sheet with the effect of suction,” Int. J. Mod. Phys. C, vol. 34, no. 10, pp. 2350134, Apr. 2023. DOI: 10.1142/S0129183123501346.
  • P. Forchheimer, “Wasserbewegung durch Boden,” Zeitschrift Des Vereines Deutscher Ingenieure, vol. 45, no. 50, pp. 1781–1788, Apr. 1901.
  • M. Muskat, The Flow of Homogeneous Fluids through Porous Media, JW Edwards. Inc., Ann Arbor, Mich., 1946,
  • M. A. Seddeek, “Influence of viscous dissipation and thermophoresis on Darcy–Forchheimer mixed convection in a fluid saturated porous media,” J Colloid Interface Sci, vol. 293, no. 1, pp. 137–142, 2006. JanDOI: 10.1016/j.jcis.2005.06.039.
  • T. Hayat, T. Muhammad, S. Al-Mezal and S. J. Liao, “Darcy-Forchheimer flow with variable thermal conductivity and Cattaneo-Christov heat flux,” HFF, vol. 26, no. 8, pp. 2355–2369, 2016. Nov DOI: 10.1108/HFF-08-2015-0333.
  • T. Hayat, R. S. Saif, R. Ellahi, T. Muhammad and B. Ahmad, “Numerical study for DarcyForchheimer flow due to a curved stretching surface with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions,” Results Phys, vol. 7, pp. 2886–2892, 2017. Jan DOI: 10.1016/j.rinp.2017.07.068.
  • T. C. Sun, M. H. Darassi, M. Bilal and M. A. Khan, “The study of Darcy-Forchheimer hybrid nanofluid flow with the thermal slip and dissipation effect using parametric continuation approach over a rotating disk,” Waves Random Complex Media, pp. 1–14, May 2022. DOI: 10.1080/17455030.2022.2072537.
  • Z. Ullah, I. Zari, T. Gul, I. Ali, W. Alghamdi and F. Ali, “Darcy-Forchheimer hybrid nanofluids flow with quadratic convection over a stretched tube,” Adv. Mech. Eng, vol. 15, no. 6, pp. 1–10, 2023. Jun DOI: 10.1177/16878132231180866.
  • W. N. Mutuku and O. D. Makinde, “Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms,” Comput. Fluids, vol. 95, pp. 88–97, May 2014. DOI: 10.1016/j.compfluid.2014.02.026.
  • W. A. Khan, O. D. Makinde and Z. H. Khan, “MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip,” Int. J. Heat Mass Transf, vol. 74, pp. 285–291, 2014. Jul DOI: 10.1016/j.ijheatmasstransfer.2014.03.026.
  • T. L. Stewart and H. S. Fogler, “Biomass plug development and propagation in porous media,” Biotechnol. Bioeng, vol. 72, no. 3, pp. 353–363, 2001. Feb DOI: 10.1002/1097-0290.
  • M. T. Sk, K. Das and P. K. Kundu, “Multiple slip effects on bioconvection of nanofluid flow containing gyrotactic microorganisms and nanoparticles,” J. Mol. Liq, vol. 220, pp. 518–526, 2016. Aug DOI: 10.1016/j.molliq.2016.04.097.
  • S. Shaw, S. S. Motsa and P. Sibanda, “Magnetic field and viscous dissipation effect on bioconvection in a permeable sphere embedded in a porous medium with a nanofluid containing gyrotactic micro-organisms,” Heat Trans. Asian Res, vol. 47, no. 5, pp. 718–734, 2018. Jul DOI: 10.1002/htj.21337.
  • A. V. Kuznetsov, “Nanofluid bioconvection in porous media: oxytactic microorganisms,” J Por Media, vol. 15, no. 3, pp. 233–248, 2012. Mar DOI: 10.1615/JPorMedia.v15.i3.30.
  • A. Sarkar, K. Das and P. K. Kundu, “On the onset of bioconvection in nanofluid containing gyrotactic microorganisms and nanoparticles saturating a non-Darcian porous medium,” J. Mol. Liq, vol. 223, pp. 725–733, 2016. Nov DOI: 10.1016/j.molliq.2016.08.109.
  • A. Zaib, M. M. Rashidi and A. J. Chamkha, “Flow of nanofluid containing gyrotactic microorganisms over static wedge in darcy-Brinkman porous medium with convective boundary condition,” J Por Media, vol. 21, no. 10, pp. 911–928, 2018. Mar DOI: 10.1615/JPorMedia.2018019967.
  • G. Kotha, V. R. Kolipaula, M. Venkata Subba Rao, S. Penki and A. J. Chamkha, “Internal heat generation on bioconvection of an MHD nanofluid flow due to gyrotactic microorganisms,” Eur. Phys. J. Plus, vol. 135, no. 7, pp. 600, 2020. Jul. DOI: 10.1140/epjp/s13360-020-00606-2.
  • R. R. Kairi, S. Shaw, S. Roy and S. Raut, “Thermosolutal marangoni impact on bioconvection in suspension of gyrotactic microorganisms over an inclined stretching sheet,” J. Heat Transfer, vol. 143, no. 3, pp. 031201, Mar. 2021. DOI: 10.1115/1.4048946.
  • M. K. Nayak, J. Prakash, D. Tripathi, V. S. Pandey, S. Shaw and O. D. Makinde, “3D Bioconvective multiple slip flow of chemically reactive Casson nanofluid with gyrotactic micro-organisms,” Heat Trans. Asian Res, vol. 49, no. 1, pp. 135–153, 2020. DOI: 10.1002/htj.21603.
  • K. Kant, A. Shukla and A. Sharma, “Advancement in phase change materials for thermal energy storage applications,” Sol. Energy Mater, vol. 172, pp. 82–92, 2017. Dec DOI: 10.1016/j.solmat.2017.07.023.
  • S. Gharbi, S. Harmand and S. B. Jabrallah, “Experimental comparison between different configurations of PCM based heat sinks for cooling electronic components,” Appl. Therm. Eng, vol. 87, pp. 454–462, 2015. Aug DOI: 10.1016/j.applthermaleng.2015.05.024.
  • F. Agyenim, “The use of enhanced heat transfer phase change materials (PCM) to improve the coefficient of performance (COP) of solar powered LiBr/H2O absorption cooling systems,” Renew. Energy, vol. 87, pp. 229–239, 2016. Mar DOI: 10.1016/j.renene.2015.10.012.
  • F. L. Tan and C. P. Tso, “Cooling of mobile electronic devices using phase change materials,” Appl. Therm. Eng, vol. 24, no. 2-3, pp. 159–169, 2004. Feb DOI: 10.1016/j.applthermaleng.2003.09.005.
  • M. Emam, S. Ookawara and M. Ahmed, “Thermal management of electronic devices and concentrator photovoltaic systems using phase change material heat sinks: experimental investigations,” Renew. Energy, vol. 141, pp. 322–339, 2019. Oct DOI: 10.1016/j.renene.2019.03.151.
  • Y. C. Weng, H. P. Cho, C. C. Chang and S. L. Chen, “Heat pipe with PCM for electronic cooling,” Appl. Energy, vol. 88, no. 5, pp. 1825–1833, May. 2011. DOI: 10.1016/j.apenergy.2010.12.004.
  • R. J. Khan, M. Z. Bhuiyan and D. H. Ahmed, “Investigation of heat transfer of a building wall in the presence of phase change material (PCM),” Energy Built Environ, vol. 1, no. 2, pp. 199–206, 2020. Apr DOI: 10.1016/j.enbenv.2020.01.002.
  • M. Ali, A. K. Alkaabi, S. A. Alameri and Y. Addad, “Overall efficiency analysis of an innovative load-following nuclear power plant-thermal energy storage coupled cycle,” IJEX, vol. 36, no. 1, pp. 98–122, 2021. Mar DOI 101504/IJEX.2021.117606. DOI: 10.1504/IJEX.2021.117606.
  • M. Ali, A. K. Alkaabi and J. I. Lee, “CFD simulation of an integrated PCM-based thermal energy storage within a nuclear power plant connected to a grid with constant or variable power demand,” Nucl. Eng. Des, vol. 394, pp. 111819, Aug. 2022. DOI: 10.1016/j.nucengdes.2022.111819.
  • D. G. Gunjo, S. R. Jena, P. Mahanta and P. S. Robi, “Melting enhancement of a latent heat storage with dispersed Cu, CuO and Al2O3 nanoparticles for solar thermal application,” Renew. Energ, vol. 121, pp. 652–665, 2018. Jun DOI: 10.1016/j.renene.2018.01.013.
  • (a)M. Gorzin, M. J. Hosseini, M. Rahimi and R. Bahrampoury, “Nano-enhancement of phase change material in a shell and multi-PCM-tube heat exchanger,” J. Energy Storage, vol. 22, pp. 88–97, Apr. 2019. DOI: 10.1016/j.est.2018.12.023. (b)F. Iachachene, Z. Haddad, H. F. Oztop and E. Abu-Nada, “Melting of phase change materials in a trapezoidal cavity: orientation and nanoparticles effects,” J. Mol. Liq, vol. 292, pp. 110592, 2019. Oct DOI: 10.1016/j.molliq.2019.03.051.
  • K. Hosseinzadeh, et al., “Effect of two different fins (longitudinal-tree like) and hybrid nano-particles (MoS2-TiO2) on solidification process in triplex latent heat thermal energy storage system,” Alex. Eng. J, vol. 60, no. 1, pp. 1967–1979, 2021. Feb DOI: 10.1016/j.aej.2020.12.001.
  • D. Huu-Quan, M. Sheremet, M. S. Kamel and M. Izadi, “Investigation of thermal-hydro dynamical behavior on nano-encapsulated PCM suspension: effect of fin position, fractioning and aspect ratio,” Chem. Eng. Process.: Process Intensif, vol. 157, pp. 108122, Nov. 2020. DOI: 10.1016/j.cep.2020.108122.
  • Z. Liu, Z. Wang and C. Ma, “An experimental study on heat transfer characteristics of heat pipe heat exchanger with latent heat storage. Part I: charging only and discharging only modes,” Energy Conversion Manage., vol. 47, no. 7-8, pp. 944–966, 2006. DOI: 10.1016/j.enconman.2005.06.004.
  • J. Guo, Z. Liu, B. Yang, X. Yang and J. Yan, “Melting assessment on the angled fin design for a novel latent heat thermal energy storage tube,” Renewable Energy, vol. 183, pp. 406–422, 2022. DOI: 10.1016/j.renene.2021.11.007.
  • J. Guo, X. Wang, B. Yang, X. Yang and M. J. Li, “Thermal assessment on solid-liquid energy storage tube packed with non-uniform angled fins,” Solar Energy Materials Solar Cells, vol. 236, pp. 111526, 2022. DOI: 10.1016/j.solmat.2021.111526.
  • M. Fang and G. Chen, “Effects of different multiple PCMs on the performance of a latent thermal energy storage system,” APPl. thermal Engineering, vol. 27, no. 5-6, pp. 994–1000, 2007. DOI: 10.1016/j.applthermaleng.2006.08.001.
  • M. Sheikholeslami, Z. Khalili and S. J. Mousavi, “Influence of self-cleaning coating on performance of photovoltaic solar system utilizing mixture of phase change material and Graphene nanoparticle,” J. Building Engineering, vol. 77, pp. 107540, 2023. DOI: 10.1016/j.jobe.2023.107540.
  • M. Sheikholeslami, “Analyzing melting process of paraffin through the heat storage with honeycomb configuration utilizing nanoparticles,” J. Energy Storage, vol. 52, pp. 104954, 2022. DOI: 10.1016/j.est.2022.104954.
  • M. Sheikholeslami, “Numerical analysis of solar energy storage within a double pipe utilizing nanoparticles for expedition of melting,” Solar Energy Materials Solar Cells, vol. 245, pp. 111856, 2022. DOI: 10.1016/j.solmat.2022.111856.
  • S. Hussain, F. Schieweck and S. Turek, “Efficient Newton-multigrid solution techniques for higher order space–time Galerkin discretizations of incompressible flow,” Appl. Numer. Math, vol. 83, pp. 51–71, 2014. Sep DOI: 10.1016/j.apnum.2014.04.011.
  • S. Hussain, K. Mehmood, M. Sagheer and A. Farooq, “Entropy generation analysis of mixed convective flow in an inclined channel with cavity with Al2O3-water nanofluid in porous medium,” Int. Commun. Heat Mass Transf, vol. 89, pp. 198–210, 2017. Dec DOI: 10.1016/j.icheatmasstransfer.2017.10.009.
  • S. Hussain, S. Shoeibi and T. Armaghani, “Impact of magnetic field and entropy generation of Casson fluid on double diffusive natural convection in staggered cavity,” Int. Commun. Heat Mass Transf, vol. 127, pp. 105520, Oct. 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105520.
  • S. Hussain, F. Ertam, M. B. Hamida, H. F. Oztop and N. H. Abu-Hamdeh, “Analysis of bioconvection and oxytactic microorganisms in a porous cavity with nano-enhanced phase change materials and quadrant heater: application of support vector regression based model,” J. Energy Storage, vol. 63, pp. 107059, Jul. 2023. DOI: 10.1016/j.est.2023.107059.
  • M. A. Sheremet and I. Pop, “Thermo-Bioconvection in a Square Porous Cavity Filled by Oxytactic Microorganisms,” Transp Porous Med, vol. 103, no. 2, pp. 191–205, 2014. DOI: 10.1007/s11242-014-0297-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.