431
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

CAMTAs, a family of calmodulin-binding transcription factors, are versatile regulators of biotic and abiotic stress responses in plants

, , &

References

  • Aarts, N., Metz, M., Holub, E., Staskawicz, B.J., Daniels, M.J., and Parker, J.E. 1998. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc. Natl. Acad. Sci. U S A. 95: 10306–10311. doi:10.1073/pnas.95.17.10306
  • Abdel-Hameed, A.A., Prasad, K.V., Jiang, Q., and Reddy, A.S. 2020. Salt-induced stability of SR1/CAMTA3 mRNA is mediated by reactive oxygen species and requires the 3’end of its open reading frame. Plant Cell Physiol. 61: 748–760. doi:10.1093/pcp/pcaa001
  • Abdel-Hameed, A.A.E., Prasad, K.V.S.K., and Reddy, A.S.N. 2023. The amino acid region from 448-517 of CAMTA3 transcription factor containing a part of the TIG domain represses the N-terminal Repression Module function. Physiol. Mol. Biol. Plants. In press. doi:10.1007/s12298-023-01401-w
  • Akar, H.H., Kose, M., Ceylan, O., Patiroglu, T., Bustamante, J., Casanova, J.L., Akyildiz, B.N., and Doganay, S. 2014. Congenital IL-12R1beta receptor deficiency and thrombophilia in a girl homozygous for an IL12RB1 mutation and compound heterozygous for MTFHR mutations: a case report and literature review. Eur. J. Microbiol. Immunol. (Bp) 4: 83–87. doi:10.1556/EuJMI.4.2014.1.8
  • Allen, G.J., Chu, S.P., Harrington, C.L., Schumacher, K., Hoffmann, T., Tang, Y.Y., Grill, E., and Schroeder, J.I. 2001. A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411: 1053–1057. doi:10.1038/35082575
  • Aravind, L., and Koonin, E.V. 1999. Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. J. Mol. Biol. 287: 1023–1040. doi:10.1006/jmbi.1999.2653
  • Arenas-Huertero, C., Pérez, B., Rabanal, F., Blanco-Melo, D., De la Rosa, C., Estrada-Navarrete, G., Sanchez, F., Covarrubias, A.A., and Reyes, J.L. 2009. Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol. Biol. 70: 385–401. doi:10.1007/s11103-009-9480-3
  • Batistic, O., and Kudla, J. 2009. Plant calcineurin B-like proteins and their interacting protein kinases. Biochim. Biophys. Acta. 1793: 985–992. doi:10.1016/j.bbamcr.2008.10.006
  • Batistic, O., Kudla, J., and Xf, R. 2004. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta 219: 915–924. doi:10.1007/s00425-004-1333-3
  • Becker, M.G., Haddadi, P., Wan, J., Adam, L., Walker, P., Larkan, N., Daayf, F., Borhan, M.H., and Belmonte, M.F. 2019. Transcriptome analysis of Rlm2-mediated host immunity in the Brassica napus-Leptosphaeria maculans pathosystem. Mol. Plant-Microbe Interact. 1001–1012.
  • Belkhadir, Y., Nimchuk, Z., Hubert, D.A., Mackey, D., and Dangl, J.L. 2004. Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1. Plant Cell. 16: 2822–2835. doi:10.1105/tpc.104.024117
  • Benn, G., Bjornson, M., Ke, H., De Souza, A., Balmond, E.I., Shaw, J.T., and Dehesh, K. 2016. Plastidial metabolite MEcPP induces a transcriptionally centered stress-response hub via the transcription factor CAMTA3. Proc. Natl. Acad. Sci. USA. 113: 8855–8860. doi:10.1073/pnas.1602582113
  • Benn, G., Wang, C.-Q., Hicks, D.R., Stein, J., Guthrie, C., and Dehesh, K. 2014. A key general stress response motif is regulated non-uniformly by CAMTA transcription factors. Plant J. 80: 82–92. doi:10.1111/tpj.12620
  • Bieri, S., Mauch, S., Shen, Q.-H., Peart, J., Devoto, A., Casais, C., Ceron, F., Schulze, S., Steinbiss, H.-H., Shirasu, K., and Schulze-Lefert, P. 2004. RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell. 16: 3480–3495. doi:10.1105/tpc.104.026682
  • Bjornson, M., Benn, G., Song, X., Comai, L., Franz, A. K., Dandekar, A. M., Drakakaki, G., and Dehesh, K. 2014. Distinct roles for mitogen-activated protein kinase signaling and CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATOR3 in regulating the peak time and amplitude of the plant general stress response. Plant Physiol. 166: 988–996. doi:10.1104/pp.114.245944
  • Bjornson, M., Pimprikar, P., Nurnberger, T., and Zipfel, C. 2021. The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity. Nat Plants 7: 579–586.
  • Boonburapong, B., and Buaboocha, T. 2007. Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biol. 7: 4. doi:10.1186/1471-2229-7-4
  • Bouche, N., Scharlat, A., Snedden, W., Bouchez, D., and Fromm, H. 2002. A novel family of calmodulin-binding transcription activators in multicellular organisms. J. Biol. Chem. 277: 21851–21861. doi:10.1074/jbc.M200268200
  • Boyer, J.S. 1982. Plant productivity and environment. Science 218: 443–448. doi:10.1126/science.218.4571.443
  • Brengues, M., Teixeira, D., and Parker, R. 2005. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310: 486–489. doi:10.1126/science.1115791
  • Brivanlou, A.H., and Darnell, J.E. Jr. 2002. Signal transduction and the control of gene expression. Science 295: 813–818. doi:10.1126/science.1066355
  • Brodersen, P., Petersen, M., Bjørn Nielsen, H., Zhu, S., Newman, M.-A., Shokat, K.M., Rietz, S., Parker, J., and Mundy, J. 2006. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J. 47: 532–546. doi:10.1111/j.1365-313X.2006.02806.x
  • Brodersen, P., Petersen, M., Pike, H. M., Olszak, B., Skov, S., Odum, N., Jørgensen, L. B., Brown, R. E., and Mundy, J. 2002. Knockout of Arabidopsis ACCELERATED-CELL-DEATH11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev. 16: 490–502. doi:10.1101/gad.218202
  • Bruinsma, J. 2002. World Agriculture: towards 2015/2030: Summary Report; Food and Agriculture Organization of the United Nations (FAO).
  • Büyük, İ., İlhan, E., Şener, D., Özsoy, A.U., and Aras, S. 2019. Genome-wide identification of CAMTA gene family members in Phaseolus vulgaris L. and their expression profiling during salt stress. Mol. Biol. Rep. 46: 2721–2732. doi:10.1007/s11033-019-04716-8
  • Cao, J.-Y., Xu, Y.-P., Li, W., Li, S.-S., Rahman, H., and Cai, X.-Z. 2016b. Genome-wide identification of dicer-like, argonaute, and RNA-dependent RNA polymerase gene families in Brassica species and functional analyses of their Arabidopsis homologs in resistance to Sclerotinia sclerotiorum. Front. Plant Sci. 7: 1614. doi:10.3389/fpls.2016.01614
  • Cao, J.-Y., Xu, Y.-P., Zhao, L., Li, S.-S., and Cai, X.-Z. 2016a. Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level. Plant Mol. Biol. 92: 39–55. doi:10.1007/s11103-016-0494-3
  • Carrión, A. M., Link, W. A., Ledo, F., Mellström, B., and Naranjo, J. R. 1999. DREAM is a Ca2+-regulated transcriptional repressor. Nature 398: 80–84. doi:10.1038/18044
  • Case, R.M., Eisner, D., Gurney, A., Jones, O., Muallem, S., and Verkhratsky, A. 2007. Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signalling system. Cell Calcium. 42: 345–350. doi:10.1016/j.ceca.2007.05.001
  • Chang, M., Chen, H., Liu, F., and Fu, Z. Q. 2022. PTI and ETI: convergent pathways with diverse elicitors. Trends Plant Sci. 27: 113–115. doi:10.1016/j.tplants.2021.11.013
  • Chao, L., Kim, Y., Gilmour, S.J., and Thomashow, M.F. 2022. Temperature modulation of CAMTA3 gene induction activity is mediated through the DNA binding domain. Plant J. 112: 235–248. doi:10.1111/tpj.15944
  • Cheng, C., Gao, X., Feng, B., Sheen, J., Shan, L., and He, P. 2013. Plant immune response to pathogens differs with changing temperatures. Nat. Commun. 4: 2530. doi:10.1038/ncomms3530
  • Chen, Y.-C., Holmes, E.C., Rajniak, J., Kim, J.-G., Tang, S., Fischer, C.R., Mudgett, M.B., and Sattely, E.S. 2018. N-hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in Arabidopsis. Proc. Natl. Acad. Sci. U S A. 115: E4920–E4929. doi:10.1073/pnas.1805291115
  • Chen, H., Xue, L., Chintamanani, S., Germain, H., Lin, H., Cui, H., Cai, R., Zuo, J., Tang, X., Li, X., Guo, H., and Zhou, J.-M. 2009. ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis. Plant Cell. 21: 2527–2540. doi:10.1105/tpc.108.065193
  • Chinnusamy, V., Schumaker, K., and Zhu, J.K. 2004. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J. Exp. Bot. 55: 225–236. doi:10.1093/jxb/erh005
  • Choi, M. S., Kim, M. C., Yoo, J. H., Moon, B. C., Koo, S. C., Park, B. O., Lee, J. H., Koo, Y. D., Han, H. J., Lee, S. Y., Chung, W. S., Lim, C. O., and Cho, M. J. 2005b. Isolation of a calmodulin-binding transcription factor from rice (Oryza sativa L.). J. Biol. Chem. 280: 40820–40831. doi:10.1074/jbc.M504616200
  • Choi, H.-i., Park, H.-J., Park, J.H., Kim, S., Im, M.-Y., Seo, H.-H., Kim, Y.-W., Hwang, I., and Kim, S.Y. 2005a. Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol. 139: 1750–1761. doi:10.1104/pp.105.069757
  • Chung, J.-S., Koo, S. C., Jin, B. J., Baek, D., Yeom, S.-I., Chun, H. J., Choi, M. S., Cho, H. M., Lee, S. H., Jung, W.-H., Choi, C. W., Chandran, A. K. N., Shim, S. I., Chung, J.-I., Jung, K.-H., and Kim, M. C. 2020. Rice CaM-binding transcription factor (OsCBT) mediates defense signaling via transcriptional reprogramming. Plant Biotechnol. Rep. 14: 309–321. doi:10.1007/s11816-020-00603-y
  • Chung, J.S., Zhu, J.K., Bressan, R.A., Hasegawa, P.M., and Shi, H. 2008. Reactive oxygen species mediate Na+‐induced SOS1 mRNA stability in Arabidopsis. Plant J. 53: 554–565. doi:10.1111/j.1365-313X.2007.03364.x
  • Clark, G.B., and Roux, S.J. 1995. Annexins of plant cells. Plant Physiol. 109: 1133–1139. doi:10.1104/pp.109.4.1133
  • Conaway, R.C., and Conaway, J.W. 2011. Function and regulation of the Mediator complex. Curr. Opin. Genet. Dev. 21: 225–230. doi:10.1016/j.gde.2011.01.013
  • Cooper, M., Gho, C., Leafgren, R., Tang, T., and Messina, C. 2014. Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J. Exp. Bot. 65: 6191–6204. doi:10.1093/jxb/eru064
  • Corcoran, E.E., and Means, A.R. 2001. Defining Ca2+/calmodulin-dependent protein kinase cascades in transcriptional regulation. J. Biol. Chem. 276: 2975–2978. doi:10.1074/jbc.R000027200
  • Corneliussen, B., Holm, M., Waltersson, Y., Onions, J., Hallberg, B., Thornell, A., and Grundström, T. 1994. Calcium/calmodulin inhibition of basic-helix-loop-helix transcription factor domains. Nature 368: 760–764. doi:10.1038/368760a0
  • Couto, D., and Zipfel, C. 2016. Regulation of pattern recognition receptor signalling in plants. Nat. Rev. Immunol. 16: 537–552. doi:10.1038/nri.2016.77
  • Cui, H., Gobbato, E., Kracher, B., Qiu, J., Bautor, J., and Parker, J.E. 2017. A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity. New Phytol. 213: 1802–1817. doi:10.1111/nph.14302
  • Dammann, C., Ichida, A., Hong, B., Romanowsky, S.M., Hrabak, E.M., Harmon, A.C., Pickard, B.G., and Harper, J.F. 2003. Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis. Plant Physiol. 132: 1840–1848. doi:10.1104/pp.103.020008
  • Dangl, J.L., Horvath, D.M., and Staskawicz, B.J. 2013. Pivoting the plant immune system from dissection to deployment. Science 341: 746–751. doi:10.1126/science.1236011
  • Darwish, E., Ghosh, R., Ontiveros-Cisneros, A., Tran, H.C., Petersson, M., De Milde, L., Broda, M., Goossens, A., Van Moerkercke, A., Khan, K., and Van Aken, O. 2022. Touch signaling and thigmomorphogenesis are regulated by complementary CAMTA3- and JA-dependent pathways. Sci. Adv. 8: eabm2091. doi:10.1126/sciadv.abm2091
  • Day, I.S., Reddy, V.S., Ali, G.S., and Reddy, A. 2002. Analysis of EF-hand-containing proteins in Arabidopsis. Genome Biol. 3: RESEARCH0056. doi:10.1186/gb-2002-3-10-research0056
  • DeFalco, T.A., Bender, K.W., and Snedden, W.A. 2010. Breaking the code: Ca2+ sensors in plant signalling. Biochem. J. 425: 27–40. doi:10.1042/BJ20091147
  • Dhlamini, Z., Spillane, C., Moss, J.P., Ruane, J., Urquia, N., and Sonnino, A. 2005. Status of Research and Applications of Crop Biotechnologies in Developing Countries: Preiminary Assessment. Rome, Italy: Food and Agriculture Organization of the United Nations.
  • Ding, P., and Ding, Y. 2020. Stories of salicylic acid: a plant defense hormone. Trends Plant Sci. 25: 549–565. doi:10.1016/j.tplants.2020.01.004
  • Ding, P., Rekhter, D., Ding, Y., Feussner, K., Busta, L., Haroth, S., Xu, S., Li, X., Jetter, R., Feussner, I., and Zhang, Y. 2016. Characterization of a pipecolic acid biosynthesis pathway required for systemic acquired resistance. Plant Cell. 28: 2603–2615. doi:10.1105/tpc.16.00486
  • Ding, S.-W., and Voinnet, O. 2007. Antiviral immunity directed by small RNAs. Cell 130: 413–426. doi:10.1016/j.cell.2007.07.039
  • Diray-Arce, J., Knowles, A., Suvorov, A., O'Brien, J., Hansen, C., Bybee, S. M., Gul, B., Khan, M. A., and Nielsen, B. L. 2019. Identification and evolutionary characterization of salt-responsive transcription factors in the succulent halophyte Suaeda fruticosa. Plos One. 14: e0222940. doi:10.1371/journal.pone.0222940
  • Doherty, C.J., Van Buskirk, H.A., Myers, S.J., and Thomashow, M.F. 2009. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell. 21: 972–984. doi:10.1105/tpc.108.063958
  • Du, L., Ali, G.S., Simons, K.A., Hou, J., Yang, T., Reddy, A.S., and Poovaiah, B.W. 2009. Ca(2+)/calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457: 1154–1158. doi:10.1038/nature07612
  • Duhlian, L., Koramutla, M.K., Subramanian, S., Chamola, R., and Bhattacharya, R. 2020. Comparative transcriptomics revealed differential regulation of defense related genes in Brassica juncea leading to successful and unsuccessful infestation by aphid species. Sci. Rep. 10: 10583. doi:10.1038/s41598-020-66217-0
  • Durrant, W.E., and Dong, X. 2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42: 185–209. doi:10.1146/annurev.phyto.42.040803.140421
  • Fang, H., Wang, P., Ye, F., Li, J., Zhang, M., Wang, C., and Liao, W. 2022. Genome-wide identification and characterization of the calmodulin-binding transcription activator (CAMTA) gene family in plants and the expression pattern analysis of CAMTA3/SR1 in tomato under abiotic stress. Int. J. Mol. Sci. 23: 6264. doi:10.3390/ijms23116264
  • Finkler, A., Ashery-Padan, R., and Fromm, H. 2007. CAMTAs: calmodulin‐binding transcription activators from plants to human. FEBS Lett. 581: 3893–3898. doi:10.1016/j.febslet.2007.07.051
  • Fischer, G., Shah, M., N., Tubiello, F., and van Velhuizen, H. 2005. Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080. Philos. Trans. R Soc. Lond. B Biol. Sci. 360: 2067–2083. doi:10.1098/rstb.2005.1744
  • Fromm, H., and Finkler, A. 2015. Repression and de-repression of gene expression in the plant immune response: the complexity of modulation by Ca2+ and calmodulin. Mol. Plant. 8: 671–673. doi:10.1016/j.molp.2015.01.019
  • Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. 2006. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 9: 436–442. doi:10.1016/j.pbi.2006.05.014
  • Galon, Y., Aloni, R., Nachmias, D., Snir, O., Feldmesser, E., Scrase-Field, S., Boyce, J. M., Bouché, N., Knight, M. R., and Fromm, H. 2010b. Calmodulin-binding transcription activator 1 mediates auxin signaling and responds to stresses in Arabidopsis. Planta 232: 165–178. doi:10.1007/s00425-010-1153-6
  • Galon, Y., Nave, R., Boyce, J.M., Nachmias, D., Knight, M.R., and Fromm, H. 2008. Calmodulin‐binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis. FEBS Lett. 582: 943–948. doi:10.1016/j.febslet.2008.02.037
  • Galon, Y., Snir, O., and Fromm, H. 2010a. How calmodulin binding transcription activators (CAMTAs) mediate auxin responses. Plant Signal. Behav. 5: 1311–1314. doi:10.4161/psb.5.10.13158
  • Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43: 205–227. doi:10.1146/annurev.phyto.43.040204.135923
  • Goddard, H., Manison, N.F.H., Tomos, D., and Brownlee, C. 2000. Elemental propagation of calcium signals in response-specific patterns determined by environmental stimulus strength. Proc. Natl. Acad. Sci. U S A. 97: 1932–1937. doi:10.1073/pnas.020516397
  • Gómez-Gómez, L., and Boller, T. 2002. Flagellin perception: a paradigm for innate immunity. Trends Plant Sci. 7: 251–256. doi:10.1016/s1360-1385(02)02261-6
  • Grant, J.J., and Loake, G.J. 2000. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol. 124: 21–29. doi:10.1104/pp.124.1.21
  • Greeff, M.C. 2014. Suppressing Autoimmunity in Arabidopsis thaliana with Dominant Negative Immune Receptors. Copenhagen, Denmark: University of Copenhagen, Faculty of Science, Department of Biology.
  • Gregory, P.J., Johnson, S.N., Newton, A.C., and Ingram, J.S. 2009. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 60: 2827–2838. doi:10.1093/jxb/erp080
  • Guo, X., and Stotz, H.U. 2007. Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signaling. Mol. Plant. Microbe Interact. 20: 1384–1395. doi:10.1094/MPMI-20-11-1384
  • Hadiarto, T., and Tran, L.S. 2011. Progress studies of drought-responsive genes in rice. Plant Cell Rep. 30: 297–310. doi:10.1007/s00299-010-0956-z
  • Han, J., Gong, P., Reddig, K., Mitra, M., Guo, P., and Li, H.-S. 2006. The fly CAMTA transcription factor potentiates deactivation of rhodopsin, a G protein-coupled light receptor. Cell 127: 847–858. doi:10.1016/j.cell.2006.09.030
  • Han, Y., Yin, S., Huang, L., Wu, X., Zeng, J., Liu, X., Qiu, L., Munns, R., Chen, Z.-H., and Zhang, G. 2018. A sodium transporter HvHKT1; 1 confers salt tolerance in barley via regulating tissue and cell ion homeostasis. Plant Cell Physiol. 59: 1976–1989. doi:10.1093/pcp/pcy116
  • Harper, J.F., and Harmon, A. 2005. Plants, symbiosis and parasites: a calcium signalling connection. Nat. Rev. Mol. Cell Biol. 6: 555–566. doi:10.1038/nrm1679
  • Hartmann, M., and Zeier, J. 2018. l‐lysine metabolism to N‐hydroxypipecolic acid: an integral immune‐activating pathway in plants. Plant J. 96: 5–21. doi:10.1111/tpj.14037
  • Hartmann, M., Zeier, T., Bernsdorff, F., Reichel-Deland, V., Kim, D., Hohmann, M., Scholten, N., Schuck, S., Bräutigam, A., Hölzel, T., Ganter, C., and Zeier, J. 2018. Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity. Cell 173: 456–469. e416. doi:10.1016/j.cell.2018.02.049
  • Harvey, S., Kumari, P., Lapin, D., Griebel, T., Hickman, R., Guo, W., Zhang, R., Parker, J. E., Beynon, J., Denby, K., and Steinbrenner, J. 2020. Downy Mildew effector HaRxL21 interacts with the transcriptional repressor TOPLESS to promote pathogen susceptibility. PLoS Pathog. 16: e1008835. doi:10.1371/journal.ppat.1008835
  • Hatfield, J.L., and Prueger, J.H. 2015. Temperature extremes: effect on plant growth and development. Weather Clim. Extremes 10: 4–10. doi:10.1016/j.wace.2015.08.001
  • He, T., and Cramer, G.R. 1996. Abscisic acid concentrations are correlated with leaf area reductions in two salt-stressed rapid-cycling Brassica species. Plant Soil 179: 25–33. doi:10.1007/BF00011639
  • Heidrich, K., Tsuda, K., Blanvillain-Baufumé, S., Wirthmueller, L., Bautor, J., and Parker, J.E. 2013. Arabidopsis TNL-WRKY domain receptor RRS1 contributes to temperature-conditioned RPS4 auto-immunity. Front. Plant Sci. 4: 403. doi:10.3389/fpls.2013.00403
  • Heil, M., and Baldwin, I.T. 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 7: 61–67. doi:10.1016/s1360-1385(01)02186-0
  • Hirayama, T., and Shinozaki, K. 2010. Research on plant abiotic stress responses in the post‐genome era: past, present and future. Plant J. 61: 1041–1052. doi:10.1111/j.1365-313X.2010.04124.x
  • Hoekenga, O. A., Maron, L. G., Piñeros, M. A., Cançado, G. M. A., Shaff, J., Kobayashi, Y., Ryan, P. R., Dong, B., Delhaize, E., Sasaki, T., Matsumoto, H., Yamamoto, Y., Koyama, H., and Kochian, L. V. 2006. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc. Natl. Acad. Sci. U S A. 103: 9738–9743. doi:10.1073/pnas.0602868103
  • Holt, B.F., Belkhadir, Y., and Dangl, J.L. 2005. Antagonistic control of disease resistance protein stability in the plant immune system. Science 309: 929–932. doi:10.1126/science.1109977
  • Horie, T., Motoda, J., Kubo, M., Yang, H., Yoda, K., Horie, R., Chan, W.-Y., Leung, H.-Y., Hattori, K., Konomi, M., Osumi, M., Yamagami, M., Schroeder, J. I., and Uozumi, N., 2005. Enhanced salt tolerance mediated by AtHKT1 transporter‐induced Na + unloading from xylem vessels to xylem parenchyma cells. Plant J. 44: 928–938. doi:10.1111/j.1365-313X.2005.02595.x
  • Huang, L., Kuang, L., Wu, L., Shen, Q., Han, Y., Jiang, L., Wu, D., and Zhang, G. 2020. The HKT transporter HvHKT1; 5 negatively regulates salt tolerance. Plant Physiol. 182: 584–596. doi:10.1104/pp.19.00882
  • Huang, J., Sun, Y., Orduna, A.R., Jetter, R., and Li, X. 2019. The Mediator kinase module serves as a positive regulator of salicylic acid accumulation and systemic acquired resistance. Plant J. 98: 842–852. doi:10.1111/tpj.14278
  • Hu, X.Y., Neill, S.J., Cai, W.M., and Tang, Z.C. 2004. Induction of defence gene expression by oligogalacturonic acid requires increases in both cytosolic calcium and hydrogen peroxide in Arabidopsis thaliana. Cell Res. 14: 234–240. doi:10.1038/sj.cr.7290224
  • Hu, R., Wang, Z., Wu, P., Tang, J., and Hou, X. 2015. Identification and abiotic stress analysis of calmodulin-binding transcription activator/signal responsive genes in non-heading Chinese cabbage ('Brassica campestris’ ssp.'chinensis’ Makino). Plant Omics 8: 141–147.
  • Iqbal, Z., Iqbal, M.S., Sangpong, L., Khaksar, G., Sirikantaramas, S., and Buaboocha, T. 2021. Comprehensive genome-wide analysis of calmodulin-binding transcription activator (CAMTA) in Durio zibethinus and identification of fruit ripening-associated DzCAMTAs. BMC Genomics. 22: 743. doi:10.1186/s12864-021-08022-1
  • Jacob, F., Kracher, B., Mine, A., Seyfferth, C., Blanvillain‐Baufumé, S., Parker, J.E., Tsuda, K., Schulze‐Lefert, P., and Maekawa, T. 2018. A dominant‐interfering camta3 mutation compromises primary transcriptional outputs mediated by both cell surface and intracellular immune receptors in Arabidopsis thaliana. New Phytol. 217: 1667–1680. doi:10.1111/nph.14943
  • Jaiswal, J.K. 2001. Calcium—how and why? J. Biosci. 26: 357–363. doi:10.1007/BF02703745
  • Jewell, J.B., Sowders, J.M., He, R., Willis, M.A., Gang, D.R., and Tanaka, K. 2019. Extracellular ATP shapes a defense-related transcriptome both independently and along with other defense signaling pathways. Plant Physiol. 179: 1144–1158. doi:10.1104/pp.18.01301
  • Jiang, X., Hoehenwarter, W., Scheel, D., and Lee, J. 2020. Phosphorylation of the CAMTA3 transcription factor triggers its destabilization and nuclear export. Plant Physiol. 184: 1056–1071. doi:10.1104/pp.20.00795
  • Jing, B., Xu, S., Xu, M., Li, Y., Li, S., Ding, J., and Zhang, Y. 2011. Brush and spray: a high-throughput systemic acquired resistance assay suitable for large-scale genetic screening. Plant Physiol. 157: 973–980. doi:10.1104/pp.111.182089
  • Jones, J.D., and Dangl, J.L. 2006. The plant immune system. Nature 444: 323–329. doi:10.1038/nature05286
  • Kansal, S., Panwar, V., Mutum, R.D., and Raghuvanshi, S. 2021. Investigations on regulation of MicroRNAs in rice reveal [Ca2+] cyt signal transduction regulated MicroRNAs. Front. Plant Sci. 2239: 2, Article 720009.
  • Kaplan, B., Davydov, O., Knight, H., Galon, Y., Knight, M.R., Fluhr, R., and Fromm, H. 2006. Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell. 18: 2733–2748. doi:10.1105/tpc.106.042713
  • Katiyar-Agarwal, S., Morgan, R., Dahlbeck, D., Borsani, O., Villegas, A., Zhu, J.-K., Staskawicz, B.J., and Jin, H. 2006. A pathogen-inducible endogenous siRNA in plant immunity. Proc. Natl. Acad. Sci. U S A. 103: 18002–18007. doi:10.1073/pnas.0608258103
  • Kidokoro, S., Yoneda, K., Takasaki, H., Takahashi, F., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2017. Different cold-signaling pathways function in the responses to rapid and gradual decreases in temperature. Plant Cell. 29: 760–774. doi:10.1105/tpc.16.00669
  • Kiep, V., Vadassery, J., Lattke, J., Maaß, J.-P., Boland, W., Peiter, E., and Mithöfer, A. 2015. Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis. New Phytol. 207: 996–1004. doi:10.1111/nph.13493
  • Kim, Y.S., An, C., Park, S., Gilmour, S.J., Wang, L., Renna, L., Brandizzi, F., Grumet, R., and Thomashow, M. 2017. CAMTA-mediated regulation of salicylic acid immunity pathway genes in Arabidopsis exposed to low temperature and pathogen infection. Plant Cell. 29: 2465–2477. doi:10.1105/tpc.16.00865
  • Kim, Y., Gilmour, S.J., Chao, L., Park, S., and Thomashow, M.F. 2020. Arabidopsis CAMTA transcription factors regulate pipecolic acid biosynthesis and priming of immunity genes. Mol. Plant. 13: 157–168. doi:10.1016/j.molp.2019.11.001
  • Kim, J.H., and Kim, W.T. 2013. The Arabidopsis RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high-salt and drought stress responses. Plant Physiol. 162: 1733–1749. doi:10.1104/pp.113.220103
  • Kim, Y., Park, S., Gilmour, S.J., and Thomashow, M.F. 2013. Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J. 75: 364–376. doi:10.1111/tpj.12205
  • Kim, S.-M., Suh, J.-P., Lee, C.-K., Lee, J.-H., Kim, Y.-G., and Jena, K.K. 2014. QTL mapping and development of candidate gene-derived DNA markers associated with seedling cold tolerance in rice (Oryza sativa L.). Mol. Genet. Genomics 289: 333–343. doi:10.1007/s00438-014-0813-9
  • Knight, M.R., Campbell, A.K., Smith, S.M., and Trewavas, A.J. 1991. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352: 524–526. doi:10.1038/352524a0
  • Knight, M.R., and Knight, H. 2012. Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol. 195: 737–751. doi:10.1111/j.1469-8137.2012.04239.x
  • Knight, H., Trewavas, A.J., and Knight, M.R. 1997. Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J. 12: 1067–1078. doi:10.1046/j.1365-313x.1997.12051067.x
  • Koch, K. G., Palmer, N. A., Donze-Reiner, T., Scully, E. D., Seravalli, J., Amundsen, K., Twigg, P., Louis, J., Bradshaw, J. D., Heng-Moss, T. M., and Sarath, G. 2020. Aphid-responsive defense networks in hybrid switchgrass. Front. Plant Sci. 11: 1145. doi:10.3389/fpls.2020.01145
  • Koo, S.C., Choi, M.S., Chun, H.J., Shin, D.B., Park, B.S., Kim, Y.H., Park, H.M., Seo, H.S., Song, J.T., Kang, K.Y., Yun, D.J., Chung, W.S., Cho, M.J., and Kim, M.C. 2009. The calmodulin-binding transcription factor OsCBT suppresses defense responses to pathogens in rice. Mol. Cells. 27: 563–570. doi:10.1007/s10059-009-0081-4
  • Koo, A.J., and Howe, G.A. 2009. The wound hormone jasmonate. Phytochemistry 70: 1571–1580. doi:10.1016/j.phytochem.2009.07.018
  • Kudla, J., Batistic, O., and Hashimoto, K. 2010. Calcium signals: the lead currency of plant information processing. Plant Cell. 22: 541–563. doi:10.1105/tpc.109.072686
  • Laloi, C., Apel, K., and Danon, A. 2004. Reactive oxygen signalling: the latest news. Curr. Opin. Plant Biol. 7: 323–328. doi:10.1016/j.pbi.2004.03.005
  • Laluk, K., Prasad, K.V., Savchenko, T., Celesnik, H., Dehesh, K., Levy, M., Mitchell-Olds, T., and Reddy, A.S. 2012. The calmodulin-binding transcription factor SIGNAL RESPONSIVE1 is a novel regulator of glucosinolate metabolism and herbivory tolerance in Arabidopsis. Plant Cell Physiol. 53: 2008–2015. doi:10.1093/pcp/pcs143
  • Laohavisit, A., and Davies, J.M. 2011. Annexins. New Phytol. 189: 40–53. doi:10.1111/j.1469-8137.2010.03533.x
  • Lee, H.G., and Seo, P.J. 2015. The MYB96–HHP module integrates cold and abscisic acid signaling to activate the CBF–COR pathway in Arabidopsis. Plant J. 82: 962–977. doi:10.1111/tpj.12866
  • Leng, X., Han, J., Wang, X., Zhao, M., Sun, X., Wang, C., and Fang, J. 2015. Characterization of a calmodulin‐binding transcription factor from strawberry (Fragaria × ananassa). Plant Genome. 8: eplantgenome2014.08.0039. doi:10.3835/plantgenome2014.08.0039
  • Li, J., Han, Y., Zhao, Q., Li, C., Xie, Q., Chong, K., and Xu, Y. 2013. The E3 ligase AtRDUF1 positively regulates salt stress responses in Arabidopsis thaliana. Plos One. 8: e71078. doi:10.1371/journal.pone.0071078
  • Li, B., He, S., Zheng, Y., Wang, Y., Lang, X., Wang, H., Fan, K., Hu, J., Ding, Z., and Qian, W. 2022. Genome-wide identification and expression analysis of the calmodulin-binding transcription activator (CAMTA) family genes in tea plant. BMC Genomics. 23: 667. doi:10.1186/s12864-022-08894-x
  • Li, X., Huang, L., Zhang, Y., Ouyang, Z., Hong, Y., Zhang, H., Li, D., and Song, F. 2014. Tomato SR/CAMTA transcription factors SlSR1 and SlSR3L negatively regulate disease resistance response and SlSR1L positively modulates drought stress tolerance. BMC Plant Biol. 14: 286. doi:10.1186/s12870-014-0286-3
  • Liu, J., Whalley, H.J., and Knight, M.R. 2015. Combining modelling and experimental approaches to explain how calcium signatures are decoded by calmodulin-binding transcription activators (CAMTAs) to produce specific gene expression responses. New Phytol. 208: 174–187. doi:10.1111/nph.13428
  • Li, T.-G., Wang, B.-L., Yin, C.-M., Zhang, D.-D., Wang, D., Song, J., Zhou, L., Kong, Z.-Q., Klosterman, S. J., Li, J.-J., Adamu, S., Liu, T.-L., Subbarao, K. V., Chen, J.-Y., and Dai, X.-F. 2019. The Gossypium hirsutum TIR‐NBS‐LRR gene GhDSC1 mediates resistance against Verticillium wilt. Mol. Plant Pathol. 20: 857–876. doi:10.1111/mpp.12797
  • Lolle, S., Greeff, C., Petersen, K., Roux, M., Jensen, M.K., Bressendorff, S., Rodriguez, E., Sømark, K., Mundy, J., and Petersen, M. 2017. Matching NLR immune receptors to autoimmunity in camta3 mutants using antimorphic NLR alleles. Cell Host Microbe. 21: 518–529.e514. doi:10.1016/j.chom.2017.03.005
  • López-Serrano, L., Calatayud, Á., López-Galarza, S., Serrano, R., and Bueso, E. 2021. Uncovering salt tolerance mechanisms in pepper plants: a physiological and transcriptomic approach. BMC Plant Biol. 21: 169. doi:10.1186/s12870-021-02938-2
  • Luan, S. 2009. The CBL–CIPK network in plant calcium signaling. Trends Plant Sci. 14: 37–42. doi:10.1016/j.tplants.2008.10.005
  • Luan, S., Kudla, J., Rodriguez-Concepcion, M., Yalovsky, S., and Gruissem, W. 2002. Calmodulins and calcineurin B–like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell. 14 Suppl: s389–s400. doi:10.1105/tpc.001115
  • Macho, A. P., and Zipfel, C. 2014. Plant PRRs and the activation of innate immune signaling. Mol. Cell. 54: 263–272. doi:10.1016/j.molcel.2014.03.028
  • Mackey, D., Belkhadir, Y., Alonso, J.M., Ecker, J.R., and Dangl, J.L. 2003. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112: 379–389. doi:10.1016/S0092-8674(03)00040-0
  • Manners, J.M., Penninckx, I.A., Vermaere, K., Kazan, K., Brown, R.L., Morgan, A., Maclean, D.J., Curtis, M.D., Cammue, B.P., and Broekaert, W.F. 1998. The promoter of the plant defensin gene PDF1. 2 from Arabidopsis is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid. Plant Mol. Biol. 38: 1071–1080. doi:10.1023/a:1006070413843
  • Matsumura, M., Nomoto, M., Itaya, T., Aratani, Y., Iwamoto, M., Matsuura, T., Hayashi, Y., Mori, T., Skelly, M.J., Yamamoto, Y.Y., Kinoshita, T., Mori, I.C., Suzuki, T., Betsuyaku, S., Spoel, S.H., Toyota, M., and Tada, Y. 2022. Mechanosensory trichome cells evoke a mechanical stimuli-induced immune response in Arabidopsis thaliana. Nat. Commun. 13: 1216. doi:10.1038/s41467-022-28813-8
  • McAinsh, M.R., and Pittman, J.K. 2009. Shaping the calcium signature. New Phytol. 181: 275–294. doi:10.1111/j.1469-8137.2008.02682.x
  • McAinsh, M.R., Webb, A.A.R., Taylor, J.E., and Hetherington, A.M. 1995. Stimulus-induced oscillations in guard cell cytosolic free calcium. The Plant Cell 7: 1207–1219. doi:10.2307/3870096
  • Meer, L., Mumtaz, S., Labbo, A.M., Khan, M.J., and Sadiq, I. 2019. Genome-wide identification and expression analysis of calmodulin-binding transcription activator genes in banana under drought stress. Sci. Hortic. 244: 10–14. doi:10.1016/j.scienta.2018.09.022
  • Mewis, I., Appel, H.M., Hom, A., Raina, R., and Schultz, J.C. 2005. Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol. 138: 1149–1162. doi:10.1104/pp.104.053389
  • Miao, Y., and Zentgraf, U. 2007. The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell. 19: 819–830. doi:10.1105/tpc.106.042705
  • Miller, G., Suzuki, N., Ciftci‐Yilmaz, S., and Mittler, R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33: 453–467. doi:10.1111/j.1365-3040.2009.02041.x
  • Mitsuda, N., Isono, T., and Sato, M.H. 2003. Arabidopsis CAMTA family proteins enhance V-PPase expression in pollen. Plant Cell Physiol. 44: 975–981. doi:10.1093/pcp/pcg137
  • Moumeni, A., Satoh, K., Kondoh, H., Asano, T., Hosaka, A., Venuprasad, R., Serraj, R., Kumar, A., Leung, H., and Kikuchi, S. 2011. Comparative analysis of root transcriptome profiles of two pairs of drought-tolerant and susceptible rice near-isogenic lines under different drought stress. BMC Plant Biol. 11: 174. doi:10.1186/1471-2229-11-174
  • Müller, C., Cramer, W., Hare, W.L., and Lotze-Campen, H. 2011. Climate change risks for African agriculture. Proc. Natl. Acad. Sci. U S A. 108: 4313–4315. doi:10.1073/pnas.1015078108
  • Müller, C.W., Rey, F.A., Sodeoka, M., Verdine, G.L., and Harrison, S.C. 1995. Structure of the NF-κB p50 homodimer bound to DNA. Nature 373: 311–317. doi:10.1038/373311a0
  • Mur, L.A., Kenton, P., Atzorn, R., Miersch, O., and Wasternack, C. 2006. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol. 140: 249–262. doi:10.1104/pp.105.072348
  • Návarová, H., Bernsdorff, F., Döring, A.-C., and Zeier, J. 2012. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell. 24: 5123–5141. doi:10.1105/tpc.112.103564
  • Ngou, B.P.M., Ahn, H.K., Ding, P., and Jones, J.D.G. 2021. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592: 110–115. doi:10.1038/s41586-021-03315-7
  • Nie, H., Zhao, C., Wu, G., Wu, Y., Chen, Y., and Tang, D. 2012. SR1, a calmodulin-binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN3. Plant Physiol. 158: 1847–1859. doi:10.1104/pp.111.192310
  • Nimchuk, Z., Eulgem, T., Holt, B. F., and Dangl, J. L. 2003. Recognition and response in the plant immune system. Annu. Rev. Genet. 37: 579–609. doi:10.1146/annurev.genet.37.110801.142628
  • Niu, M., Xie, J., Chen, C., Cao, H., Sun, J., Kong, Q., Shabala, S., Shabala, L., Huang, Y., and Bie, Z. 2018. An early ABA-induced stomatal closure, Na + sequestration in leaf vein and K + retention in mesophyll confer salt tissue tolerance in Cucurbita species. J. Exp. Bot. 69: 4945–4960. doi:10.1093/jxb/ery251
  • Noman, M., Jameel, A., Qiang, W.-D., Ahmad, N., Liu, W.-C., Wang, F.-W., and Li, H.-Y. 2019. Overexpression of GmCAMTA12 enhanced drought tolerance in Arabidopsis and soybean. Int J Mol Sci 20: 4849. doi:10.3390/ijms20194849
  • Novikova, D.D., Cherenkov, P.A., Sizentsova, Y.G., and Mironova, V.V. 2020. metaRE R package for meta-analysis of transcriptome data to identify the cis-regulatory code behind the transcriptional reprogramming. Genes (Basel) 11: 634. doi:10.3390/genes11060634
  • O’Malley, R. C., Huang, S.-S C., Song, L., Lewsey, M. G., Bartlett, A., Nery, J. R., Galli, M., Gallavotti, A., and Ecker, J. R. 2016. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165: 1280–1292. doi:10.1016/j.cell.2016.04.038
  • Ouyang, Z., Mi, L., Duan, H., Hu, W., Chen, J., Peng, T., and Zhong, B. 2019. Differential expressions of citrus CAMTAs during fruit development and responses to abiotic stresses. Biologia Plant. 63: 354–364. doi:10.32615/bp.2019.041
  • Pan, J., Li, Z., Dai, S., Ding, H., Wang, Q., Li, X., Ding, G., Wang, P., Guan, Y., and Liu, W. 2020. Integrative analyses of transcriptomics and metabolomics upon seed germination of foxtail millet in response to salinity. Sci. Rep. 10: 13660. doi:10.1038/s41598-020-70520-1
  • Pandey, N., Ranjan, A., Pant, P., Tripathi, R.K., Ateek, F., Pandey, H.P., Patre, U.V., and Sawant, S.V. 2013. CAMTA 1 regulates drought responses in Arabidopsis thaliana. BMC Genomics. 14: 216. doi:10.1186/1471-2164-14-216
  • Pant, P., Iqbal, Z., Pandey, B.K., and Sawant, S.V. 2018. Genome-wide comparative and evolutionary analysis of calmodulin-binding transcription activator (CAMTA) family in Gossypium species. Sci. Rep. 8: 5573. doi:10.1038/s41598-018-23846-w
  • Pauly, N., Knight, M.R., Thuleau, P., van der Luit, A.H., Moreau, M., Trewavas, A.J., Ranjeva, R., and Mazars, C. 2000. Control of free calcium in plant cell nuclei. Nature 405: 754–755.
  • Perchepied, L., Balagué, C., Riou, C., Claudel-Renard, C., Rivière, N., Grezes-Besset, B., and Roby, D. 2010. Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. Mol. Plant. Microbe Interact. 23: 846–860. doi:10.1094/MPMI-23-7-0846
  • Poovaiah, B.W., Du, L., Wang, H., and Yang, T. 2013. Recent advances in calcium/calmodulin-mediated signaling with an emphasis on plant-microbe interactions. Plant Physiol. 163: 531–542. doi:10.1104/pp.113.220780
  • Prasad, K.V.S.K., Abdel-Hameed, A.A.E., Jiang, Q.Y., and Reddy, A.S. N. 2023. DNA-binding activity of CAMTA3 is essential for its function: identification of critical amino acids for its transcriptional activity. Cells-Basel 12: 1986. doi:10.3390/cells12151986
  • Prasad, K.V.S.K., Abdel-Hameed, A.A.E., Xing, D., and Reddy, A.S.N. 2016. Global gene expression analysis using RNA-seq uncovered a new role for SR1/CAMTA3 transcription factor in salt stress. Sci. Rep. 6: 27021. doi:10.1038/srep27021
  • Pruitt, R. N., Locci, F., Wanke, F., Zhang, L., Saile, S. C., Joe, A., Karelina, D., Hua, C., Fröhlich, K., Wan, W.-L., Hu, M., Rao, S., Stolze, S. C., Harzen, A., Gust, A. A., Harter, K., Joosten, M. H. A. J., Thomma, B. P. H. J., Zhou, J.-M., Dangl, J. L., Weigel, D., Nakagami, H., Oecking, C., Kasmi, F. E., Parker, J. E., and Nürnberger, T. 2021. The EDS1-PAD4-ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature 598: 495–499. doi:10.1038/s41586-021-03829-0
  • Qiu, Y.J., Xi, J., Du, L.Q., Suttle, J.C., and Poovaiah, B.W. 2012. Coupling calcium/calmodulin-mediated signaling and herbivore-induced plant response through calmodulin-binding transcription factor AtSR1/CAMTA3. Plant Mol. Biol. 79: 89–99. doi:10.1007/s11103-012-9896-z
  • Quan, R., Hu, S., Zhang, Z., Zhang, H., Zhang, Z., and Huang, R. 2010. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnol. J. 8: 476–488. doi:10.1111/j.1467-7652.2009.00492.x
  • Rahman, H., Xu, Y.P., Zhang, X.R., and Cai, X.Z. 2016a. Brassica napus genome possesses extraordinary high number of CAMTA genes and CAMTA3 contributes to PAMP triggered immunity and resistance to Sclerotinia sclerotiorum. Front. Plant Sci. 7: 581. doi:10.3389/fpls.2016.00581
  • Rahman, H., Yang, J., Xu, Y.P., Munyampundu, J.P., and Cai, X.Z. 2016b. Phylogeny of plant CAMTAs and role of AtCAMTAs in nonhost resistance to Xanthomonas oryzae pv. oryzae. Front. Plant Sci. 7: 177. doi:10.3389/fpls.2016.00177
  • Raichaudhuri, A., Bhattacharyya, R., Chaudhuri, S., Chakrabarti, P., and Dasgupta, M. 2006. Domain analysis of a groundnut calcium-dependent protein kinase: nuclear localization sequence in the junction domain is coupled with nonconsensus calcium binding domains. J. Biol. Chem. 281: 10399–10409. doi:10.1074/jbc.M511001200
  • Ranjan, A., Pandey, N., Lakhwani, D., Dubey, N.K., Pathre, U.V., and Sawant, S.V. 2012. Comparative transcriptomic analysis of roots of contrasting Gossypium herbaceum genotypes revealing adaptation to drought. BMC Genomics. 13: 680. doi:10.1186/1471-2164-13-680
  • Ranjan, A., and Sawant, S. 2015. Genome-wide transcriptomic comparison of cotton (Gossypium herbaceum) leaf and root under drought stress. 3 Biotech. 5: 585–596. doi:10.1007/s13205-014-0257-2
  • Rate, D.N., Cuenca, J.V., Bowman, G.R., Guttman, D.S., and Greenberg, J.T. 1999. The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. Plant Cell. 11: 1695–1708. doi:10.1105/tpc.11.9.1695
  • Reddy, V.S., Day, I.S., Thomas, T., and Reddy, A.S. 2004. KIC, a novel Ca2+ binding protein with one EF-hand motif, interacts with a microtubule motor protein and regulates trichome morphogenesis. Plant Cell. 16: 185–200. doi:10.1105/tpc.016600
  • Reddy, A.S., Reddy, V.S., and Golovkin, M. 2000. A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif. Biochem. Biophys. Res. Commun. 279: 762–769. doi:10.1006/bbrc.2000.4032
  • Reynolds, M., Foulkes, J., Furbank, R., Griffiths, S., King, J., Murchie, E., Parry, M., and Slafer, G. 2012. Achieving yield gains in wheat. Plant. Cell Environ. 35: 1799–1823. doi:10.1111/j.1365-3040.2012.02588.x
  • Robert-Seilaniantz, A., MacLean, D., Jikumaru, Y., Hill, L., Yamaguchi, S., Kamiya, Y., and Jones, J.D.G. 2011. The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates. Plant J. 67: 218–231. doi:10.1111/j.1365-313X.2011.04591.x
  • Rodríguez‐Concepción, M., Yalovsky, S., Zik, M., Fromm, H., and Gruissem, W. 1999. The prenylation status of a novel plant calmodulin directs plasma membrane or nuclear localization of the protein. Embo J. 18: 1996–2007. doi:10.1093/emboj/18.7.1996
  • Rubtsov, A.M., and Lopina, O.D. 2000. Ankyrins. FEBS Lett. 482: 1–5. doi:10.1016/s0014-5793(00)01924-4
  • Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.Y., and Hunt, M.D. 1996. Systemic acquired resistance. Plant Cell. 8: 1809–1819. doi:10.1105/tpc.8.10.1809
  • Ryu, H., and Cho, Y.-G. 2015. Plant hormones in salt stress tolerance. J. Plant Biol. 58: 147–155. doi:10.1007/s12374-015-0103-z
  • Saeediazar, S., Zarrini, H.N., Ranjbar, G., and Heidari, P. 2014. Identification and study of cis regulatory elements and phylogenetic relationship of TaSRG and other salt response genes. J. Biol. Enviorn. Sci. 5: 1–5.
  • Saeidi, K., Zare, N., Baghizadeh, A., and Asghari-Zakaria, R. 2019. Phaseolus vulgaris genome possesses CAMTA genes, and phavuCAMTA1 contributes to the drought tolerance. J. Genet. 98: 14. doi:10.1007/s12041-019-1069-2
  • Sakeh, N.M., Abdullah, S.N.A., Bahari, M.N.A., Azzeme, A.M., Shaharuddin, N.A., and Idris, A.S. 2021. EgJUB1 and EgERF113 transcription factors as potential master regulators of defense response in Elaeis guineensis against the hemibiotrophic Ganoderma boninense. BMC Plant Biol. 21: 59. doi:10.1186/s12870-020-02812-7
  • Sanders, D., Pelloux, J., Brownlee, C., and Harper, J.F. 2002. Calcium at the crossroads of signaling. Plant Cell. 14 Suppl: S401–S417. doi:10.1105/tpc.002899
  • Sarwat, M., and Tuteja, N. 2007. Calnexin: a versatile calcium binding integral membrane-bound chaperone of endoplasmic reticulum. Calcium Binding Proteins 2: 36–50.
  • Sawaki, Y., Iuchi, S., Kobayashi, Y., Kobayashi, Y., Ikka, T., Sakurai, N., Fujita, M., Shinozaki, K., Shibata, D., Kobayashi, M., and Koyama, H. 2009. STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol. 150: 281–294. doi:10.1104/pp.108.134700
  • Schwessinger, B., and Ronald, P.C. 2012. Plant innate immunity: perception of conserved microbial signatures. Annu. Rev. Plant Biol. 63: 451–482. doi:10.1146/annurev-arplant-042811-105518
  • Scrase-Field, S.A., and Knight, M.R. 2003. Calcium: just a chemical switch? Curr. Opin. Plant Biol. 6: 500–506. doi:10.1016/s1369-5266(03)00091-8
  • Seyfferth, C., and Tsuda, K. 2014. Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming. Front. Plant Sci. 5: 697. doi:10.3389/fpls.2014.00697
  • Shangguan, L., Wang, X., Leng, X., Liu, D., Ren, G., Tao, R., Zhang, C., and Fang, J. 2014. Identification and bioinformatic analysis of signal responsive/calmodulin-binding transcription activators gene models in Vitis vinifera. Mol. Biol. Rep. 41: 2937–2949. doi:10.1007/s11033-014-3150-5
  • Shen, Q., Fu, L., Su, T., Ye, L., Huang, L., Kuang, L., Wu, L., Wu, D., Chen, Z.-H., and Zhang, G. 2020. Calmodulin HvCaM1 negatively regulates salt tolerance via modulation of HvHKT1s and HvCAMTA4. Plant Physiol. 183: 1650–1662. doi:10.1104/pp.20.00196
  • Shen, D., Suhrkamp, I., Wang, Y., Liu, S., Menkhaus, J., Verreet, J.-A., Fan, L., and Cai, D. 2014. Identification and characterization of microRNAs in oilseed rape (Brassica napus) responsive to infection with the pathogenic fungus Verticillium longisporum using Brassica AA (Brassica rapa) and CC (Brassica oleracea) as reference genomes. New Phytol. 204: 577–594. doi:10.1111/nph.12934
  • Shepherd, J.G. 2009. Geoengineering the Climate: Science, Governance and Uncertainty. London, UK: Royal Society.
  • Shinozaki, K., and Yamaguchi-Shinozaki, K. 2007. Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58: 221–227. doi:10.1093/jxb/erl164
  • Shirano, Y., Kachroo, P., Shah, J., and Klessig, D.F. 2002. A gain-of-function mutation in an Arabidopsis toll interleukin1 receptor–nucleotide binding site–leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell. 14: 3149–3162. doi:10.1105/tpc.005348
  • Shkolnik, D., Finkler, A., Pasmanik-Chor, M., and Fromm, H. 2019. CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 6: a key regulator of Na + homeostasis during germination. Plant Physiol. 180: 1101–1118. doi:10.1104/pp.19.00119
  • Sohn, K.H., Segonzac, C., Rallapalli, G., Sarris, P.F., Woo, J.Y., Williams, S.J., Newman, T.E., Paek, K.H., Kobe, B., and Jones, J.D.G. 2014. The nuclear immune receptor RPS4 is required for RRS1(SLH1)-dependent constitutive defense activation in Arabidopsis thaliana. PLoS Genet. 10: e1004655. doi:10.1371/journal.pgen.1004655
  • Song, K., Backs, J., McAnally, J., Qi, X., Gerard, R.D., Richardson, J.A., Hill, J.A., Bassel-Duby, R., and Olson, E.N. 2006. The transcriptional coactivator CAMTA2 stimulates cardiac growth by opposing class II histone deacetylases. Cell 125: 453–466. doi:10.1016/j.cell.2006.02.048
  • Spoel, S.H., and Dong, X. 2008. Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe. 3: 348–351. doi:10.1016/j.chom.2008.05.009
  • Stocker, T. 2014. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press. p. 1535.
  • Sun, T., Busta, L., Zhang, Q., Ding, P., Jetter, R., and Zhang, Y. 2018. TGACG‐BINDING FACTOR 1 (TGA 1) and TGA 4 regulate salicylic acid and pipecolic acid biosynthesis by modulating the expression of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD 1) and CALMODULIN‐BINDING PROTEIN 60g (CBP 60g). New Phytol. 217: 344–354. doi:10.1111/nph.14780
  • Sun, Y., Fan, X.-Y., Cao, D.-M., Tang, W., He, K., Zhu, J.-Y., He, J.-X., Bai, M.-Y., Zhu, S., Oh, E., Patil, S., Kim, T.-W., Ji, H., Wong, W. H., Rhee, S. Y., and Wang, Z.-Y. 2010. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev. Cell. 19: 765–777. doi:10.1016/j.devcel.2010.10.010
  • Sun, T., Huang, J., Xu, Y., Verma, V., Jing, B., Sun, Y., Ruiz Orduna, A., Tian, H., Huang, X., Xia, S., Schafer, L., Jetter, R., Zhang, Y., and Li, X. 2020. Redundant CAMTA transcription factors negatively regulate the biosynthesis of salicylic acid and N-hydroxypipecolic acid by modulating the expression of SARD1 and CBP60g. Mol. Plant. 13: 144–156. doi:10.1016/j.molp.2019.10.016
  • Thomashow, M.F. 2010. Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol. 154: 571–577. doi:10.1104/pp.110.161794
  • Tian, H., Wu, Z., Chen, S., Ao, K., Huang, W., Yaghmaiean, H., Sun, T., Xu, F., Zhang, Y., Wang, S., Li, X., and Zhang, Y. 2021. Activation of TIR signalling boosts pattern-triggered immunity. Nature 598: 500–503. doi:10.1038/s41586-021-03987-1
  • Tokizawa, M., Kobayashi, Y., Saito, T., Kobayashi, M., Iuchi, S., Nomoto, M., Tada, Y., Yamamoto, Y.Y., and Koyama, H. 2015. Sensitive to proton rhizotoxicity1, calmodulin binding transcription activator2, and other transcription factors are involved in aluminum-activated malate transporter1 expression. Plant Physiol. 167: 991–1003. doi:10.1104/pp.114.256552
  • Torrens-Spence, M.P., Bobokalonova, A., Carballo, V., Glinkerman, C.M., Pluskal, T., Shen, A., and Weng, J.K. 2019. PBS3 and EPS1 complete salicylic acid biosynthesis from isochorismate in Arabidopsis. Mol. Plant. 12: 1577–1586. doi:10.1016/j.molp.2019.11.005
  • Tracy, F.E., Gilliham, M., Dodd, A.N., Webb, A.A.R., and Tester, M. 2008. NaCl-induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition. Plant. Cell Environ. 31: 1063–1073. doi:10.1111/j.1365-3040.2008.01817.x
  • Truman, W., Sreekanta, S., Lu, Y., Bethke, G., Tsuda, K., Katagiri, F., and Glazebrook, J. 2013. The CALMODULIN-BINDING PROTEIN60 family includes both negative and positive regulators of plant immunity. Plant Physiol. 163: 1741–1751. doi:10.1104/pp.113.227108
  • Tsuda, K., Mine, A., Bethke, G., Igarashi, D., Botanga, C.J., Tsuda, Y., Glazebrook, J., Sato, M., and Katagiri, F. 2013. Dual regulation of gene expression mediated by extended MAPK activation and salicylic acid contributes to robust innate immunity in Arabidopsis thaliana. PLoS Genet. 9: e1004015. doi:10.1371/journal.pgen.1004015
  • van Der Luit, A.H., Olivari, C., Haley, A., Knight, M.R., and Trewavas, A.J. 1999. Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiol. 121: 705–714. doi:10.1104/pp.121.3.705
  • Vanacker, H., Lu, H., Rate, D.N., and Greenberg, J.T. 2001. A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis. Plant J. 28: 209–216. doi:10.1046/j.1365-313x.2001.01158.x
  • Virdi, A.S., Singh, S., and Singh, P. 2015. Abiotic stress responses in plants: roles of calmodulin-regulated proteins. Front. Plant Sci. 6: 809. doi:10.3389/fpls.2015.00809
  • Vlot, A.C., Dempsey, D.M. A., and Klessig, D.F. 2009. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47: 177–206. doi:10.1146/annurev.phyto.050908.135202
  • Vogel, J.T., Zarka, D.G., Van Buskirk, H.A., Fowler, S.G., and Thomashow, M.F. 2005. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J. 41: 195–211. doi:10.1111/j.1365-313X.2004.02288.x
  • Voinnet, O. 2008. Post-transcriptional RNA silencing in plant–microbe interactions: a touch of robustness and versatility. Curr. Opin. Plant Biol. 11: 464–470. doi:10.1016/j.pbi.2008.04.006
  • Walley, J.W., Coughlan, S., Hudson, M.E., Covington, M.F., Kaspi, R., Banu, G., Harmer, S.L., and Dehesh, K. 2007. Mechanical stress induces biotic and abiotic stress responses via a novel cis-element. PLoS Genet. 3: 1800–1812. doi:10.1371/journal.pgen.0030172
  • Wang, Z.-Y., Bai, M.-Y., Oh, E., and Zhu, J.-Y. 2012. Brassinosteroid signaling network and regulation of photomorphogenesis. Annu. Rev. Genet. 46: 701–724. doi:10.1146/annurev-genet-102209-163450
  • Wang, Y., Gong, Q., Wu, Y., Huang, F., Ismayil, A., Zhang, D., Li, H., Gu, H., Ludman, M., Fátyol, K., Qi, Y., Yoshioka, K., Hanley-Bowdoin, L., Hong, Y., and Liu, Y. 2021. A calmodulin-binding transcription factor links calcium signaling to antiviral RNAi defense in plants. Cell Host Microbe. 29: 1393–1406. e1397. doi:10.1016/j.chom.2021.07.003
  • Wang, W., Guo, L., Li, Y., Su, M., Lin, Y., De Perthuis, C., Ju, X., Lin, E., and Moran, D. 2015b. Greenhouse gas intensity of three main crops and implications for low-carbon agriculture in China. Clim. Change 128: 57–70. doi:10.1007/s10584-014-1289-7
  • Wang, L., Li, H., Zhao, C., Li, S., Kong, L., Wu, W., Kong, W., Liu, Y., Wei, Y., Zhu, J.-K., and Zhang, H. 2017. The inhibition of protein translation mediated by AtGCN1 is essential for cold tolerance in Arabidopsis thaliana. Plant. Cell Environ. 40: 56–68. doi:10.1111/pce.12826
  • Wang, C., Shang, J.-X., Chen, Q.-X., Oses-Prieto, J. A., Bai, M.-Y., Yang, Y., Yuan, M., Zhang, Y.-L., Mu, C.-C., Deng, Z., Wei, C.-Q., Burlingame, A. L., Wang, Z.-Y., and Sun, Y. 2013. Identification of BZR1-interacting proteins as potential components of the brassinosteroid signaling pathway in Arabidopsis through tandem affinity purification. Mol. Cell. Proteomics 12: 3653–3665. doi:10.1074/mcp.M113.029256
  • Wang, Z., Yang, L., Jander, G., Bhawal, R., Zhang, S., Liu, Z., Oakley, A., and Hua, J. 2022. AIG2A and AIG2B limit the activation of salicylic acid-regulated defenses by tryptophan-derived secondary metabolism in Arabidopsis. Plant Cell. 34: 4641–4660. doi:10.1093/plcell/koac255
  • Wang, G., Zeng, H., Hu, X., Zhu, Y., Chen, Y., Shen, C., Wang, H., Poovaiah, B., and Du, L. 2015a. Identification and expression analyses of calmodulin-binding transcription activator genes in soybean. Plant Soil 386: 205–221. doi:10.1007/s11104-014-2267-6
  • Webb, A.A., McAinsh, M.R., Taylor, J.E., and Hetherington, A.M. 1996. Calcium ions as intracellular second messengers in higher plants. Advances in Botanical Research 22: 45–96.
  • Wei, M., Xu, X.M., and Li, C.H. 2017. Identification and expression of CAMTA genes in Populus trichocarpa under biotic and abiotic stress. Sci. Rep. 7: 17910. doi:10.1038/s41598-017-18219-8
  • Williams, R.J.P. 2006. The evolution of calcium biochemistry. Biochim. Biophys. Acta. 1763: 1139–1146. doi:10.1016/j.bbamcr.2006.08.042
  • Wu, J., Yang, Z., Wang, Y., Zheng, L., Ye, R., Ji, Y., Zhao, S., Ji, S., Liu, R., Xu, L., Zheng, H., Zhou, Y., Zhang, X., Cao, X., Xie, L., Wu, Z., Qi, Y., and Li, Y. 2015. Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. Elife 4: e05733. doi:10.7554/eLife.05733
  • Xiao, P., Feng, J.-W., Zhu, X.-T., and Gao, J. 2021. Evolution analyses of CAMTA transcription factor in plants and its enhancing effect on cold-tolerance. Front. Plant Sci. 12: 758187. doi:10.3389/fpls.2021.758187
  • Xie, R., Pan, X., Zhang, J., Ma, Y., He, S., Zheng, Y., and Ma, Y. 2018. Effect of salt-stress on gene expression in citrus roots revealed by RNA-seq. Funct. Integr. Genomics. 18: 155–173. doi:10.1007/s10142-017-0582-8
  • Xu, T., Niu, J., and Jiang, Z. 2022. Sensing mechanisms: calcium signaling mediated abiotic stress in plants. Front. Plant Sci. 13: 925863. doi:10.3389/fpls.2022.925863
  • Yang, F., Dong, F.-s., Hu, F.-h., Liu, Y.-w., Chai, J.-f., Zhao, H., Lv, M.-y., and Zhou, S. 2020. Genome-wide identification and expression analysis of the calmodulin-binding transcription activator (CAMTA) gene family in wheat (Triticum aestivum L.). BMC Genet. 21: 105. doi:10.1186/s12863-020-00916-5
  • Yang, C., Li, Z., Cao, X., Duan, W., Wei, C., Zhang, C., Jiang, D., Li, M., Chen, K., Qiao, Y., Liu, H., and Zhang, B. 2022. Genome-wide analysis of calmodulin binding transcription activator (CAMTA) gene family in peach (Prunus persica L. Batsch) and ectopic expression of PpCAMTA1 in Arabidopsis camta2, 3 mutant restore plant development. Int. J. Mol. Sci. 23: 1–13, 10500. doi:10.3390/ijms231810500
  • Yang, T., Peng, H., Whitaker, B.D., and Conway, W.S. 2012. Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening. BMC Plant Biol. 12: 19. doi:10.1186/1471-2229-12-19
  • Yang, T., Peng, H., Whitaker, B.D., and Jurick, W.M. 2013. Differential expression of calcium/calmodulin-regulated SlSRs in response to abiotic and biotic stresses in tomato fruit. Physiol. Plant. 148: 445–455. doi:10.1111/ppl.12027
  • Yang, T., and Poovaiah, B.W. 2000. An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death. J. Biol. Chem. 275: 38467–38473. doi:10.1074/jbc.M003566200
  • Yang, T., and Poovaiah, B.W. 2002. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J. Biol. Chem. 277: 45049–45058. doi:10.1074/jbc.M207941200
  • Yang, Y., Sun, T., Xu, L., Pi, E., Wang, S., Wang, H., and Shen, C. 2015. Genome-wide identification of CAMTA gene family members in Medicago truncatula and their expression during root nodule symbiosis and hormone treatments. Front. Plant Sci. 6: 459. doi:10.3389/fpls.2015.00459
  • Yildiz, I., Mantz, M., Hartmann, M., Zeier, T., Kessel, J., Thurow, C., Gatz, C., Petzsch, P., Köhrer, K., and Zeier, J. 2021. The mobile SAR signal N-hydroxypipecolic acid induces NPR1-dependent transcriptional reprogramming and immune priming. Plant Physiol. 186: 1679–1705. doi:10.1093/plphys/kiab166
  • Yuan, P., Du, L., and Poovaiah, B.W. 2018. Ca(2+)/calmodulin-dependent AtSR1/CAMTA3 plays critical roles in balancing plant growth and immunity. Int. J. Mol. Sci. 19: 1764. doi:10.3390/ijms19061764
  • Yuan, P., Jewell, J.B., Behera, S., Tanaka, K., and Poovaiah, B.W. 2020. Distinct molecular pattern-induced calcium signatures lead to different downstream transcriptional regulations via AtSR1/CAMTA3. Int. J. Mol. Sci. 21: 8163. doi:10.3390/ijms21218163
  • Yuan, M., Jiang, Z., Bi, G., Nomura, K., Liu, M., Wang, Y., Cai, B., Zhou, J.M., He, S.Y., and Xin, X.F. 2021b. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592: 105–109. doi:10.1038/s41586-021-03316-6
  • Yuan, P., and Poovaiah, B.W. 2022. Interplay between Ca(2+)/calmodulin-mediated signaling and AtSR1/CAMTA3 during increased temperature resulting in compromised immune response in plants. Int J Mol Sci 23: 2175. doi:10.3390/ijms23042175
  • Yuan, J., Shen, C., Chen, B., Shen, A., and Li, X. 2021a. Genome-wide characterization and expression analysis of CAMTA gene family under salt stress in Cucurbita moschata and Cucurbita maxima. Front. Genet. 12: 647339. doi:10.3389/fgene.2021.647339
  • Yuan, P., Tanaka, K., and Poovaiah, B.W. 2021c. Calmodulin-binding transcription activator AtSR1/CAMTA3 fine-tunes plant immune response by transcriptional regulation of the salicylate receptor NPR1. Plant. Cell Environ. 44: 3140–3154. doi:10.1111/pce.14123
  • Yue, R., Lu, C., Sun, T., Peng, T., Han, X., Qi, J., Yan, S., and Tie, S. 2015. Identification and expression profiling analysis of calmodulin-binding transcription activator genes in maize (Zea mays L.) under abiotic and biotic stresses. Front. Plant Sci. 6: 576. doi:10.3389/fpls.2015.00576
  • Yu, C.-P., Lin, J.-J., and Li, W.-H. 2016. Positional distribution of transcription factor binding sites in Arabidopsis thaliana. Sci. Rep. 6: 25164. doi:10.1038/srep25164
  • Yu, X., Li, L., Zola, J., Aluru, M., Ye, H., Foudree, A., Guo, H., Anderson, S., Aluru, S., Liu, P., Rodermel, S., and Yin, Y. 2011. A brassinosteroid transcriptional network revealed by genome‐wide identification of BESI target genes in Arabidopsis thaliana. Plant J. 65: 634–646. doi:10.1111/j.1365-313X.2010.04449.x
  • Zhang, L., Du, L.Q., Shen, C.J., Yang, Y.J., and Poovaiah, B.W. 2014. Regulation of plant immunity through ubiquitin-mediated modulation of Ca2+-calmodulin-AtSR1/CAMTA3 signaling. Plant J. 78: 269–281. doi:10.1111/tpj.12473
  • Zhang, W., Fraiture, M., Kolb, D., Löffelhardt, B., Desaki, Y., Boutrot, F.F., Tör, M., Zipfel, C., Gust, A.A., and Brunner, F. 2013. Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi. Plant Cell. 25: 4227–4241. doi:10.1105/tpc.113.117010
  • Zhang, Y., Goritschnig, S., Dong, X., and Li, X. 2003. A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell. 15: 2636–2646. doi:10.1105/tpc.015842
  • Zhang, J., Pan, X., Ge, T., Yi, S., Lv, Q., Zheng, Y., Ma, Y., Liu, X., and Xie, R. 2019. Genome-wide identification of citrus CAMTA genes and their expression analysis under stress and hormone treatments. J. Hortic. Sci. Biotechnol. 94: 331–340. doi:10.1080/14620316.2018.1504631
  • Zhang, W., Zhao, F., Jiang, L., Chen, C., Wu, L., and Liu, Z. 2018. Different pathogen defense strategies in Arabidopsis: more than pathogen recognition. Cells-Basel 7: 252. doi:10.3390/cells7120252
  • Zeng, H., Wu, H., Wang, G., Dai, S., Zhu, Q., Chen, H., Yi, K., and Du, L. 2022. Arabidopsis CAMTA3/SR1 is involved in drought stress tolerance and ABA signaling. Plant Sci. 319: 111250. doi:10.1016/j.plantsci.2022.111250
  • Zhu, X., Wang, B., Wei, X., and Du, X. 2022. Characterization of the CqCAMTA gene family reveals the role of CqCAMTA03 in drought tolerance. BMC Plant Biol. 22: 428. doi:10.1186/s12870-022-03817-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.