Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 64, 2013 - Issue 2
276
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Weighted Sum of Gray Gas Modeling for Nongray Radiation in Combusting Environment Using the Hybrid Solution Methodology

, , &
Pages 174-197 | Received 09 Nov 2012, Accepted 15 Feb 2013, Published online: 22 May 2013

REFERENCES

  • X. L. Zhu and J. P. Gore , Radiation Effects on Combustion and Pollutant Emissions of High-Pressure Opposed Flow Methane/Air Diffusion Flames , Combustion and Flame , vol. 141 , no. 1–2 , pp. 118 – 130 , 2005 .
  • M. F. Modest , Radiative Heat Transfer , McGraw-Hill , New York , 1993 .
  • J. Taine , A Line-By-Line Calculation of Low-Resolution Radiative Properties of CO2–CO-transparent no isothermal gases mixtures up to 3000 K , J. Quant. Spectrosc. Radiat. Transfer , vol. 30 , pp. 371 – 379 , 1983 .
  • F. Liu , Numerical Solutions of Three Dimensional Non Gray Gas Radiative Transfer Using the Statistical Narrow Band Model , AMSE J. Heat Transfer , vol. 121 , no. 1 , pp. 200 – 203 , 1999 .
  • D. K. Edwards , Molecular Gas Band Radiation, in T. F. Irvine , Jr. , and J. P. Hartnett , (eds.), Advances in Heat Transfer , vol. 12, pp. 115–193, Academic Press , New York , 1976.
  • R. M. Goody , R. West , L. Chen , and D. Crisp , The Correlated k Method for Radiation Calculations in Non-homogeneous Atmospheres , J. Quant. Spectrosc. Radiat. Transfer , vol. 42 , pp. 539 – 550 , 1989 .
  • F. S. Liu and F. J. Smallwood , Application of Statistical Narrow Band Correlated k Method to Non-grey Gas Radiation in CO2-H2O Mixtures, Approximate Treatments of Overlapping Bands , J. Quant. Spectrosc. Radiat. Transfer , vol. 68 , pp. 401 – 417 , 2001 .
  • H. C. Hottel and A. F. Sarofirm , Radiative Transfer , McGraw-Hill , New York , 1967 .
  • M. F. Modest , The Weighted Sum of Grey Gases Model for Arbitrary Solution Methods in Radiative Transfer , ASME J. Heat Transfer , vol. 113 , pp. 650 – 656 , 1991 .
  • O. J. Kim and T.-H. song , Implementation of the Weighted Sum of Gray Gases Model to a Narrow Band: Application and Validity , Numer. Heat Transfer B , vol. 30 , pp. 453 – 468 , 1996 .
  • T. F. Smith , Z. F. Shen , and J. N. Friedman , Evaluation of Coefficient for the Weighed Sum of Gray Gases Model , ASME J. Heat Transfer , vol. 104 , pp. 602 – 608 , 1982 .
  • O. J. Kim and T. H. Song , Data base of WSGGM-Based Spectral Model for Radiation Properties of Combustion Products , J. Quant. Spectrosc. Radiat. Transfer , vol. 64 , pp. 379 – 394 , February 2000 .
  • A. Soufiani and E. Djavdan , A Comparison Between Weighted Sum of Gray Gases and Statistical Narrow Band Radiation Models for Combustion Applications , Combustion and Flame , vol. 97 , pp. 240 – 250 , 1994 .
  • A. Boutoub , H. Benticha , and M. Sassi , Non Gray Radiation Analysis in Participating Media with Finite Volume Method , Turkish J. Eng. Environ. Sci. , vol. 30 , pp. 183 – 192 , 2006 .
  • D. N. Trivic , Modeling of 3-D Non Gray Gases Radiation by Coupling the Finite Volume Method with Weighted Sum of Gray Gases Model , Int. J. Heat and Mass Transfer , vol. 47 , pp. 1367 – 1382 , 2004 .
  • M. J. Yu , S. W. Baek , and J. H. Park , An Extension of the Weighted Sum of Gray Gases Radiation Model to a Two Phase Mixture of Non-gray Gas with Particles , Int. J. Heat Mass Transfer , vol. 43 , pp. 1699 – 1713 , 2000 .
  • M. N. Borjini , K. Guedri , and R. said , Modeling of Radiative Heat Transfer in 3-D Complex Boiler with Non-gray Sooting Media , J. Quant. Spectrosc. Radiat. Transfer , vol. 105 , pp. 167 – 179 , 2007 .
  • J. R. Howell , Thermal Radiation in Participating Media: The Past, the Present and Some Possible Futures , Trans. ASME, J. Heat Transfer , vol. 110 , pp. 1220 – 1229 , 1988 .
  • R. Viskanta and M. P. Menguc , Radiation Heat Transfer in Combustion Systems , Prog. Energy combustion Sci. , vol. 13 , pp. 97 – 160 , 1987 .
  • S. Chandrasekhar , Radiative Transfer , Oxford University Press , London , 1960 .
  • G. D. Raithby and E. H. Chui , A Finite Volume Method for Predicting a Radiant Heat Transfer in Enclosures with Participating Media , Trans. ASME, J. Heat Transfer , vol. 112 , pp. 415 – 423 , 1990 .
  • M. P. Menguc and R. Viskanta , Radiative Transfer in Three Dimensional Rectangular Enclosure , J. Quant. Spectrosc. Radiat. Transfer , vol. 33 , pp. 533 – 549 , 1985 .
  • S. Mazumder and M. F. Modest , A Probability Density Function Approach to Modeling Turbulence Radiation Interaction in Nonluminous Flames , Int. J. Heat Mass Transfer , vol. 42 , pp. 971 – 991 , 1999 .
  • G. Li and M. F. Modest , Importance of Turbulence Radiation Interactions in Turbulent Diffusion Jet Flames , J. Heat Transfer , vol. 125 , pp. 831 – 838 , 2003 .
  • V. P. Kabashnikov and G. I. Kmit , Influence of Turbulent Fluctuations on Thermal Radiation , J. Appl. Spectrosc. , vol. 31 , pp. 963 – 967 , 1979 .
  • Y. Wu , D. C. Haworth , M. F. Modest , and B. Cuenot , Direct Numerical Simulation of Turbulence Radiation Interaction in Premixed Combustion Systems, Proc. Combustion Inst. , vol. 30, pp. 639–646, 2005.
  • A. Habibi , B. Merci , and D. Roekaerts , Turbulence Radiation Interaction in Reynolds-Averaged Navier–Stokes Simulations of Non-premixed Piloted Turbulent Laboratory-Scale Flames , Combustion and Flame , vol. 151 , pp. 303 – 320 , 2007 .
  • P. J. Coelho , Numerical Simulation of the Interaction Between Turbulence and Radiation in Reactive Flows , Prog. Energy Combustion Sci. , vol. 33 , pp. 311 – 383 , 2007 .
  • R. Yadav , A. K. Verma , and D. Bessette , A Hybrid Solution Methodology for Efficient Solving of Radiative Heat Transfer in Non Gray Medium Using WSSG Model, ASME 2009 Heat Transfer Summer Conference Collocated with the InterPACK09 and 3rd Energy Sustainability Conferences (HT2009), San Francisco, CA, pp. 903–910, July 19–23, 2009 .
  • P. J. Coelho , P. Perez , and M. El Hafi , Benchmark Numerical Solutions for Radiative Heat Transfer in Two Dimensional Axisymmetric Enclosures with Nongray Sooting Media , Numer. Heat Transfer , vol. 43 , pp. 425 – 444 , 2003 .
  • ANSYS Fluent 14.0 User Guide, 2011, www.ansys.com .
  • International Workshop on Measurement and Computation of Turbulent Non-premixed Flames, Sandia National Laboratories, http://www.ca.sandia.gov/TNF .
  • T. W. J. Peeters , P. P. J. Stroomer , J. E. de Vries , D. J. E. M. Roekaerts , and C. J. Hoogendoorn , Comparative Experimental and Numerical Investigation of a Piloted Turbulent Natural-Gas Diffusion Flame , Symp. (Int.) on Combustion , vol. 25 , pp. 1241 – 1248 , 1994 .
  • C. K. Westbrook and F. L. Dryer , Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames , Combustion Sci. Technol. , vol. 27 , pp. 31 – 43 , 1981 .
  • S. Hong , D. N. Assanis , M. S. Wooldridge , H. G. Im , E. Kurtz , and H. Pitsch , Modeling of Diesel Combustion and NO Emission Based on a Modified Eddy Dissipation Concept, SAE Paper 04P-273, 2004 .
  • B. Naud , C. Jimenez , B. Merci , and D. Roekaerts , Transported PDF Calculations of the Piloted Jet Diffusion Flame ‘Delft Flame III’ with Complex Chemistry: Study of the Pilot Flame Model, Computational Combustion 2007, ECCOMAS Thematic Conference, Delft, The Netherlands, 18–20 July 2007.
  • S. A. Lalleman , T. N. Dugue , and R. Weber , Scaling Characteristics of Aerodynamics and Low-NOx Properties of Industrial Natural Gas Burners, The SCALING 400 Study, Part IV: The 300 kW BERL Test Results, IFRF Doc. No. F40/y/11, International Flame Research Foundation, The Netherlands.
  • M. D. Smooke , I. K. Puri , and K. Seshadri , A Comparison between Numerical Calculations and Experimental Measurements of the Structure of a Counterflow Diffusion Flame Burning Diluted Methane in Diluted Air , Proc. Combustion Inst. , vol. 21 , pp. 1783 – 1792 , 1986 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.