Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 68, 2015 - Issue 1
178
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Sine-Squared Thermal Boundary Condition on Augmentation of Heat Transfer in a Triangular Solar Collector Filled with Different Nanofluids

, , , , &
Pages 53-74 | Received 28 Sep 2014, Accepted 10 Nov 2014, Published online: 22 Apr 2015

REFERENCES

  • M. Karami, M. A. Akhavan Bahabadi, S. Delfani, and A. Ghozatloo A New Application of Carbon Nanotubes Nanofluid as Working Fluid of Low-Temperature Direct Absorption Solar Collector, Solar Energy Mater. Solar Cells, vol. 121, pp. 114–118, 2014.
  • T. Yousefi, F. Veysi, E. Shojaeizadeh, and S. Zinadini An Experimental Investigation on the Effect of Al2O3–H2O Nanofluid on the Efficiency of Flat-Plate Solar Collectors, Renewable Energy, vol. 39, pp. 293–298, 2012.
  • H. Bararnia, K. Hooman, and D. D. Ganji Natural Convection in a Nanofluids-Filled Portioned Cavity: The Lattice-Boltzmann Method, Numer. Heat Transfer A, vol. 59, pp. 487–502, 2011.
  • R. Saidur, T. C. Meng, Z. Said, M. Hasanuzzaman, and A. Kamyar Evaluation of the Effect of Nanofluid-Based Absorbers on Direct Solar Collector, Int. J. Heat Mass Transfer, vol. 55, pp. 5899–5907, 2012.
  • E. Abu-Nada and H. F. Oztop Numerical Analysis of Al2O3/Water Nanofluids Natural Convection in a Wavy Walled Cavity, Numer. Heat Transfer A, vol. 59, pp. 403–419, 2011.
  • E. M. del Campo, M. Sen, and E. Ramos Analysis of Laminar Natural Convection in a Triangular Enclosure, Numer. Heat Transfer, vol. 13, pp. 353–372, 1988.
  • M. M. Rahman, H. F. Öztop, A. Ahsan, and J. Orfi Natural Convection Effects on Heat and Mass Transfer in a Curvilinear Triangular Cavity, Int. J. Heat Mass Transfer, vol. 55, pp. 6250–6259, 2012.
  • T. Basak, G. Aravind, and S. Roy Visualization of Heat Flow due to Natural Convection within Triangular Cavities Using Bejan's Heatline Concept, Int. J. Heat Mass Transfer, vol. 52, pp. 2824–2833, 2009.
  • A. Koca, H. F. Oztop, and Y. Varol The Effects of Prandtl Number on Natural Convection in Triangular Enclosures with Localized Heating from Below, Int. Commun. Heat Mass Transfer, vol. 34, pp. 511–519, 2007.
  • S.-K. Choi, S.-O. Kim, T.-H. Lee, and Dohee-Hahn Computation of the Natural Convection of Nanofluid in a Square Cavity with Homogeneous and Nonhomogeneous Models, Numer. Heat Transfer A, vol. 65, pp. 287–301, 2014.
  • H. F. Oztop, M. Mobedi, E. Abu-Nada, and I. Pop A Heatline Analysis of Natural Convection in a Square Inclined Enclosure Filled with a CuO Nanofluid under Non-uniform Wall Heating Condition, Int. J. Heat Mass Transfer, vol. 55, pp. 5076–5086, 2012.
  • M. M. Rahman, M. M. Billah, M. Hasanuzzaman, R. Saidur, and N. A. Rahim Heat Transfer Enhancement of Nanofluids in a Lid-Driven Square Enclosure, Numer. Heat Transfer A, vol. 62, pp. 973–991, 2012.
  • M. K. Moraveji and M. Hejazian Natural Convection in a Rectangular Enclosure Containing an Oval-Shaped Heat Source and Filled with Fe3O4/Water Nanofluid, Int. Commun. Heat Mass Transfer, vol. 44, pp. 135–146, 2013.
  • H. Saleh, R. Roslan, and I. Hashim Natural Convection Heat Transfer in a Nanofluid-Filled Trapezoidal Enclosure, Int. J. Heat Mass Transfer, vol. 54, pp. 194–201, 2011.
  • A. da Silva, É. Fontana, V. Cocco Mariani, and F. Marcondes Numerical Investigation of Several Physical and Geometric Parameters in the Natural Convection into Trapezoidal Cavities, Int. J. Heat Mass Transfer, vol. 55, pp. 6808–6818, 2012.
  • R. Nasrin and S. Parvin Investigation of Buoyancy-Driven Flow and Heat Transfer in a Trapezoidal Cavity Filled with Water–Cu Nanofluid, Int. Commun. Heat Mass Transfer, vol. 39, pp. 270–274, 2012.
  • S. Sivasankaran and K. L. Pan Natural Convection of Nanofluids in a Cavity with Nonuniform Temperature Distributions on Side Walls, Numer. Heat Transfer A, vol. 65, pp. 247–268, 2014.
  • M. M. Rahman, M. M. Billah, A. T. M. M. Rahman, M. A. Kalam, and A. Ahsan Numerical Investigation of Heat Transfer Enhancement of Nanofluids in an Inclined Lid-Driven Triangular Enclosure, Int. Commun. Heat Mass Transfer, vol. 38, pp. 1360–1367, 2011.
  • R. Nasrin, M. A. Alim, and A. J. Chamkha Combined Convection Flow in Triangular Wavy Chamber Filled with Water–CuO Nanofluid: Effect of Viscosity Models, Int. Commun. Heat Mass Transfer, vol. 39, pp. 1226–1236, 2012.
  • Z.-T. Yu, X. Xu, Y.-C. Hu, L.-W. Fan, and K.-F. Cen Numerical Study of Transient Buoyancy-Driven Convective Heat Transfer of Water-Based Nanofluids in a Bottom-Heated Isosceles Triangular Enclosure, Int. J. Heat Mass Transfer, vol. 54, pp. 526–532, 2011.
  • M. M. Rahman, S. Mojumder, S. Saha, S. Mekhilef, and R. Saidur Augmentation of Natural Convection Heat Transfer in Triangular Shape Solar Collector by Utilizing Water Based Nanofluids Having a Corrugated Bottom Wall, Int. Commun. Heat Mass Transfer, vol. 50, pp. 117–127, 2014.
  • B. Ghasemi and S. M. Aminossadati Mixed Convection in a Lid-Driven Triangular Enclosure Filled with Nanofluids, Int. Commun. Heat Mass Transfer, vol. 37, pp. 1142–1148, 2010.
  • M. M. Rahman, S. Saha, S. Mojumder, S. Mekhilef, and R. Saidur Numerical Simulation of Unsteady Heat Transfer in a Half Moon Shape Enclosure with Variable Thermal Boundary Condition for Different Nanofluids, Numer. Heat Transfer B, vol. 65, pp. 282–301, 2014.
  • T.-B. Chang, S.-C. Syu, and Y.-K. Yang Effects of Particle Volume Fraction on Spray Heat Transfer Performance of Al2O3–Water Nanofluid, Int. J. Heat Mass Transfer, vol. 55, pp. 1014–1021, 2012.
  • M. A. Ahmed, N. H. Shuaib, and M. Z. Yusoff Numerical Investigations on the Heat Transfer Enhancement in a Wavy Channel Using Nanofluid, Int. J. Heat Mass Transfer, vol. 55, pp. 5891–5898, 2012.
  • Z.-T. Yu, X. Xu, Y.-C. Hu, L.-W. Fan, and K.-F. Cen A Numerical Investigation of Transient Natural Convection Heat Transfer of Aqueous Nanofluids in a Horizontal Concentric Annulus, Int. J. Heat Mass Transfer, vol. 55, pp. 1141–1148, 2012.
  • H. Bararnia, K. Hooman, and D. D. Ganji Natural Convection in a Nanofluids-Filled Portioned Cavity: The Lattice-Boltzmann Method, Numer. Heat Transfer A, vol. 59, pp. 487–502, 2011.
  • M. M. Billah, M. M. Rahman, M. A. Razzak, R. Saidur, and S. Mekhilef Unsteady Buoyancy-Driven Heat Transfer Enhancement of Nanofluids in an Inclined Triangular Enclosure, Int. Commun. Heat Mass Transfer, vol. 49, pp. 115–127, 2013.
  • T. Basak, P. Gunda, and R. Anandalakshmi Analysis of Entropy Generation during Natural Convection in Porous Right-Angled Triangular Cavities with Various Thermal Boundary Conditions, Int. J. Heat Mass Transfer, vol. 55, pp. 4521–4535, 2012.
  • E. Bilgen and R. Ben Yedder Natural Convection in Enclosure with Heating and Cooling by Sinusoidal Temperature Profiles on one Side, Int. J. Heat Mass Transfer, vol. 50, pp. 139–150, 2007.
  • T. Basak and A. J. Chamkha Heatline Analysis on Natural Convection for Nanofluids Confined within Square Cavities with Various Thermal Boundary Conditions, Int. J. Heat Mass Transfer, vol. 55, pp. 5526–5543, 2012.
  • H. T. Cheong, Z. Siri, and S. Sivasankaran Effect of Aspect Ratio on Natural Convection in an Inclined Rectangular Enclosure with Sinusoidal Boundary Condition, Int. Commun. Heat Mass Transfer, vol. 45, pp. 75–85, 2013.
  • S. Sivasankaran, A. Malleswaran, J. Lee, and P. Sundar Hydro-Magnetic Combined Convection in a Lid-Driven Cavity with Sinusoidal Boundary Conditions on Both Sidewalls, Int. J. Heat Mass Transfer, vol. 54, pp. 512–525, 2011.
  • G. H. R. Kefayati Lattice Boltzmann Simulation of MHD Natural Convection in a Nanofluid-Filled Cavity with Sinusoidal Temperature Distribution, Powder Technol., vol. 243, pp. 171–183, 2013.
  • A. Dalal and M. K. Das Numerical Study of Laminar Natural Convection in a Complicated Cavity Heated from Top with Sinusoidal Temperature and Cooled from Other Sides, Comput. Fluids, vol. 36, pp. 680–700, 2007.
  • M. M. Molla, S. C. Saha, and M. A. Hossain Radiation Effect on Free Convection Laminar Flow along a Vertical Flat Plate with Streamwise Sinusoidal Surface Temperature, Math. Comput. Model., vol. 53, pp. 1310–1319, 2011.
  • B. Ghasemi and S. M. Aminossadati Brownian Motion of Nanoparticles in a Triangular Enclosure with Natural Convection, Int. J. Thermal Sci., vol. 49, pp. 931–940, 2010.
  • F. S. Javadi, R. Saidur, and M. Kamalisarvestani Investigating Performance Improvement of Solar Collectors by Using Nanofluids, Renew. Sustain. Energy Rev., vol. 28, pp. 232–245, 2013.
  • G. Colangelo, E. Favale, A. de Risi, and D. Laforgia A New Solution for Reduced Sedimentation Flat Panel Solar Thermal Collector Using Nanofluids, Appl. Energy, vol. 111, pp. 80–93, 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.