Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 68, 2015 - Issue 3
121
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Direct Numerical Simulation of Air Heated Cylinder Wake in Transitional State, Part III: Temperature T* in Turbulence Anisotropy (TA), Turbulence of T*, Discontinuity and Dislocation B, and Their Causes in T* with Laminar PSD Gradient, PSD Oscillation, and Strongly Active Scalar

Pages 257-293 | Received 01 Nov 2014, Accepted 15 Jan 2015, Published online: 23 Jun 2015

REFERENCES

  • K. Noto Direct Numerical Simulation of Air Heated Cylinder Wake in Transitional State. Part I: Cylinder Heating Effect on Strong Turbulence Anisotropy (STA), and Determination of STA Suppression, Numer. Heat Transfer B, vol. 66, pp. 43–76, 2014.
  • K. Noto Direct Numerical Simulation of Air Heated Cylinder Wake in Transitional State. Part II: Visualization and Mechanism of Unified 3-D Streaklines, Vortex Dislocation, and Turbulence Wreck, Numer. Heat Transfer B, vol. 66, pp. 77–108, 2014.
  • M. M. Zdrakovich Flow Around Circular Cylinder, vol. 1, Oxford University Press, Oxford, UK, 1997.
  • K. Noto Direct Numerical Simulation of Isothermal Wake: DNS Noise, Strong Anisotropy Turbulence and Vortex Dislocation, Generation Mechanism, Numer. Heat Transfer B, vol. 56, pp. 167–189, 2009.
  • K. Noto and K. Fujimoto Formulation and Numerical Methodology for Three-Dimensional Wake of Heated Circular Cylinder, Numer. Heat Transfer A, vol. 49, pp. 129–158, 2006.
  • K. Noto and K. Fujimoto Numerical Computation for Effect on Three-Dimensionality and Vortex Dislocation in Heated Wake with Vertical Mainstream, Numer. Heat Transfer A, vol. 51, pp. 541–572, 2007.
  • C. H. K. Williamson The Natural and Forced Formation of Spot-Like “Vortex Dislocations” in the Transition of a Wake, J. Fluid Mech., vol. 243, pp. 393–441, 1992.
  • K. Satpathy, K. Velusamy, B. S. V. Patnaik, and P. Chellapandi Numerical Investigation of Vortex Shedding past a Finite Circular Cylinder Mounted on a Flat Plate, Numer. Heat Transfer A, vol. 59, pp. 882–909, 2011.
  • K. Noto and H. Ishida, A Breakdown of the Karman Vortex Street due to the Natural Convection, Proc. Flow Visualization III, Springer Verlag, Berlin, HE, pp. 348–352, 1985.
  • K. Noto and R. Matsumoto, Breakdown of the Karman Vortex Street due to Natural Convection. Numerical Methods in Thermal Problems, Pineridge Press, Swansea, UK, pp. 484–499, 1987.
  • K. Noto and R. Matsumoto Breakdown of the Karman Vortex Street due to Natural Convection: Numerical Simulation, Theoretical Applied Mechanism, University of Tokyo Press, Tokyo, pp. 83–94, 1989.
  • K. Noto and T. Miyake Generation of the Karman Vortex Street at Low Reynolds Number due to Cooling a Cylinder: Cause and Fluid Type Effect by Numerical Computation, Numer. Heat Transfer A, vol. 40, pp. 659–688, 2001.
  • K. Noto and T. Nakajima Generation and Suppression of the Karman Vortex Street upon Controlling Surface Temperature of Circular Cylinder, Proc. 7th Int. Conf. Numerical Methods Laminar Turbulent Flows, Pineridge Press, Swansea, UK, 1, pp. 671–684, 1991.
  • K. S. Chang and J. Y. Sa The Effect of Buoyancy on Vortex Shedding in the Near Wake of a Circular Cylinder, J. Fluid Mech., vol. 220, pp. 253–266, 1990.
  • K. Hatanaka and M. Kawahara A Numerical Study of Vortex Shedding around a Heated/Cooled Circular Cylinder by the Three-Step Taylor Galerkin Method, Int. J. for Numer. Meth. in Fluids, vol. 21, pp. 857–867, 1995.
  • K. Noto and S. Sugimura Numerical Computation of a New Vortex (a Cooled Vortex Street) and its Generation Mechanism in a Cooled Circular Cylinder Wake at Low Reynolds Number, Numer. Heat Transfer A, vol. 52, pp. 875–909, 2007.
  • S. Bhattacharyya and A. K. Singh Wake Flow and Heat Transfer due to a Spherical Viscous Droplet, Numer. Heat Transfer A, vol. 57, pp. 138–158, 2010.
  • R. N. Kieft, C. C. M. Rindt, and A. A. van Steenhoven The Wake Behavior behind a Heated Horizontal Cylinder, Exp. Thermal Fluid Sci., vol. 19, pp. 183–193, 1999.
  • E. Lamballais and J. H. Silvestrini Direct Numerical Simulation of Interactions between a Mixing Layer and a Wake around a Cylinder, J. Turbulence, vol. 3, no. 28, pp. 1–21, 2002.
  • S. C. C. Bailey, G. A. Kopp, and R. J. Martinuzzi Vortex Shedding from a Square Cylinder near a Wall, J. Turbulence, vol. 3, no. 3, pp. 1–19, 2002.
  • C. K. Huang, Y. J. Cgeng, and Y. P. Kang Combined Effect of Grid Turbulence and Unsteady Wake on Convective Heat Transfer around a Heated Cylinder, Int. Commun. Heat Mass Transfer, vol. 34, pp. 1091–1100, 2007.
  • M. H. Wu, and A. B. Wang On the Transitional Wake behind a Heated Circular Cylinder, Phys. Fluids, vol. 19, 084102, 2007.
  • J. C. Lecordier, J. Hamma, and P. Paranthoen The Control of Vortex Shedding behind Heated Circular Cylinders at Low Reynolds Numbers, Exp. Fluids, vol. 10, pp. 224–229, 1991.
  • S. W. Pemg and H. W. Wu Buoyancy-Aided/Opposed Convection Heat Transfer for Unsteady Turbulent Flow across a Square Cylinder in a Vertical Channel, Int. J. Heat Mass Transfer, vol. 50, pp. 3701–3717, 2007.
  • A. Dalal, V. Eswaran, and G. Biswas A Finite-Volume Method for Navier-Stokes Equations on Unstructured Meshes, Numer. Heat Transfer B, vol. 54, pp. 238–259, 2008.
  • L. Baranyi, S. Szabo, B. Bollo, and R. Bordas Analysis of Low Reynolds Number Flow around a Heated Circular Cylinder, J. Mech. Sci. Tech., vol. 23, pp. 1829–1834, 2009.
  • L. Djenidi and R. A. Antonia Momentum and Heat Transport in a Three-Dimensional Transitional Wake of a Heated Square Cylinder, J. Fluid Mech., vol. 640, pp. 109–129, 2009.
  • B. Cuhadaroglu and O. Turan Numerical Simulation of Turbulent Flow around a Square Cylinder with Uniform Injection or Suction and Heat Transfer, Numer. Heat Transfer A, vol. 55, pp. 163–184, 2009.
  • H. Hu and M. M. Kochesfahani Thermal Effects on the Wake of a Heated Circular Cylinder Operating in Mixed Convection Regime, J. Fluid Mech., vol. 685, pp. 235–270, 2011.
  • S. Sarkar, A. Dalal, and G. Biswas Unsteady Wake Dynamics and Heat Transfer in Forced and Mixed Convection past a Circular Cylinder in Cross Flow for High Prandtl Numbers, Int. J. Heat Mass Transfer, vol. 54, pp. 3536–3551, 2011.
  • J. Mi, M. Xu, R. A. Antonia, and J. J. Wang Thermal Characteristics of the Wake Shear Layers from a Slightly Heated Circular Cylinder, Expr. Fluids, vol. 50, pp. 429–441, 2011.
  • L. Venema, D. Von Terzi, H. J. Baauer, and W. Rodi DNS of Heat Transfer Increase in a Cylinder Stagnation Region due to Wake-Induced Turbulence, Int. J. Heat Fluid Flow, vol. 32, pp. 492–498, 2011.
  • A. Berajeklian and L. Mydlarsski Simultaneous Velocity-Temperature Measurements in the Heated Wake of a Cylinder with Implications for Modeling of Turbulent Passive Scalars, Phys. Fluids, vol. 23, 055107, 2011.
  • M. Boilaud, D. Couton, and F. Plourde Direct Numerical Simulation of the Turbulent Wake behind a Heated Cylinder, Int. J. Heat Fluid Flow, vol. 38, pp. 82–93, December, 2012.
  • G. L. Brown and A. Roshko Turbulent Shear Layers and Wakes, J. Turbulence, vol. 13, no. 51, 2012.
  • P. K. Panigrahi and K. Muralidhar Flow past Heated Bluff Bodies, Imaging Heat and Mass Transfer Processes, Spriger Briefs in Applied Sciences and Technology, vol. 4, pp. 7–43, 2013.
  • H. Cao, T. Zhou, Y. Zhou, and H. Zhang Simultaneously Measured Vorticity and Passive Heat in a Cylinder Wake, Fluid-Structure-Sound Interactions and Control Lecture Notes in Mechanical Engineering, pp. 191–196, 2014.
  • H. Dryden, G. B. Schubauer, G. B. Mock, and H. K. Skarmstad Turbulent Spectra, NASA Report, vol. 581, 1931.
  • G. I. Taylor Statistical Theory of Turbulence, Parts 1–4, Proc. Roy. Soc. London, Ser. A, vol. 151, pp. 421–478, 1935.
  • A. A. Townsend The Uniform Distortion of Homogeneous Turbulence, Quart. J. Mech. Appl. Math., vol. 7, pp. 104–127, 1954.
  • H. J. Tucker and A. J. Reynolds The Distortion of Turbulence by Irrotational Plane Strain, J. Fluid Mech., vol. 32, pp. 657–673, 1968.
  • S. J. Kline, W. C. Reynolds, F. A. Schraub, and P. W. Runstadler The Structure of Turbulent Boundary Layer, J. Fluid Mech., vol. 30, pp. 741–773, 1967.
  • A. Shabbir and W. K. George Experiments on a Round Turbulent Plume, J. Fluid Mech., vol. 275, pp. 1–32, 1994.
  • J. Kim and J. J. Jeong Large Eddy Simulation of Turbulent Flow in a T-Junction, Numer. Heat Transfer A, vol. 61, pp. 180–200, 2012.
  • J. L. Lumley and G. R. Newman The Return to Isotropy of Homogeneous Turbulence, J. Fluid Mech., vol. 82, pp. 161–178, 1977.
  • D. C. Fritts, L. Wang, J. Werne, T. Lund, and K. Wan Gravity Wave Instability Dynamics at High Reynolds Numbers, Part II: Turbulence Evolution, Structure, and Anisotropy, J. Atmos. Sci., vol. 66, pp. 1149–1171, 2009.
  • D. C. Fritts, L. Wang, J. Werne, T. Lund, and K. Wan, Gravity Wave Instability Dynamics at High Reynolds Numbers Part I: Wave Field Evolution at Large Amplitudes and High Frequencies, J. Atmos. Sci., vol. 66, pp. 1126–1148, 2009.
  • Z. Vlahostergios, A. Sideridis, K. Yakinthos, and A. Goulas Performance Assessment of a Non-Linear Eddy-Viscosity Turbulence Model Applied to the Anisotropic Wake Flow of a Low-Pressure Turbine Blade, Int. J. Heat Fluid Flow, vol. 3, pp. 24–39, 2012.
  • B. Inhester, J. C. Ulwick, J. Cho, M. C. Kelley, and Schmidt, Consistency of Rocket and Radar Electron Density Observations: Implication about the Anisotropy of Mesospheric Turbulence, J. Atmos. Terr. Phys., vol. 52, pp. 855–873, 1990.
  • C. Cambon and J. F. Scott Linear and Nonlinear Models of Anisotropic Turbulence, Annu. Rev. Fluid Mech., vol. 31, pp. 1–53, 1999.
  • R. G-Elvia, A. Crespo, Emilio Migoya, F. Manuel, and Julio Hemandez Anisotropy of Turbulence in Wind Turbine Wakes, J. Wind Eng. Ind. Aerody., vol. 93, pp. 797–814, 2005.
  • R. Escudie and A. Line Analysis of Turbulence Anisotropy in a Mixing Tank, Chem. Eng. Sci., vol. 61, pp. 2771–2779, 2006.
  • G. E. Karniadakis and G. S. Triantafyllou Three-Dimensional Dynamics and Transition to Turbulence in the Wake of Bluff Objects, J. Fluid Mech., vol. 238, pp. 1–30, 1992.
  • H. Q. Zhang, U. Fey, B. R. Noack, M. Konig, and H. Eckelmann On the Transition of the Cylinder Wake, Phys. Fluids, vol. 7, pp. 779–794, 1995.
  • H. Persillon and M. Braza Physical Analysis of the Transition to Turbulence in the Wake of a Circular Cylinder by Three-Dimensional Navier-Stokes Simulation, J. Fluid Mech., vol. 365, pp. 23–88, 1998.
  • J. Robichaux, S. Balachandar, and S. P. Vanka Three-Dimensional Floquet Instability of the Wake of Square Cylinder, Phys. Fluids, vol. 11, pp. 560–578, 1999.
  • S. Behara and S. Mittal Wake Transition in Flow Past a Circular Cylinder, Phys. Fluids, vol. 22, 114104, 2010.
  • T. Akbar, G. Bouchet, and J. Dusek Numerical Investigation on the Subcritical Effects at the Onset of Three-Dimensionality in the Circular Cylinder Wake, Phys. Fluids, vol. 23, 094103, 2011.
  • L. H. Hu, X. Y. Zhao, W. Zhu, and F. Tang An experimental Investigation and Characterization on Flame Bifurcation and Leading Transition Behavior of a Pool Fire in Near Wake of a Square Cylinder, Int. J. Heat Mass Transfer, vol. 55, pp. 7024–7035, 2012.
  • Z. Q. Tang, and N. Jiang Statistical Scale of Hairpin Packets in the Later Stage of Bypass Transition Induced by Cylinder Wake, Expr. Fluids, vol. 53, pp. 345–351, 2012.
  • O. Shoshani and O. Gottlieb Non-Linear Stability of Perturbed Orr-Sommerfeld Solution for the Wake of Stationary Cylinder at Low Reynolds numbers, Int. J. Non-Linear Mech., vol. 57, pp. 176–182, 2013.
  • S. Galtier, S. V. Nazarenko, A. C. Newell, and A. Pouquet Anisotopic Turbulence of Shear-Alfen Waves, Astrophys. J., vol. 564, pp. L49–L52, 2002.
  • J. Cho and A. Lazarian The Anisotropy of Electron Magnetohydrodynamic Turbulence, Astrophy. J., vol. 615, pp. L41–L44, 2004.
  • N. Tombazis and P. W. Bearman A Study of Three-Dimensional Aspects of Vortex Shedding from a Bluff Body with a Mild Geometric Disturbance, J. Fluid Mech., vol. 330, pp. 85–112, 1997.
  • K. Luo, J. Fan, W. Li, and K. Cen Transient, Three-Dimensional Simulation of Particle Dispersion in Flows around a Circular Cylinder Re = 140–260, Fuel, vol. 88, pp. 1294–1301, 2009.
  • G. C. Ling and H. L. Zhao Vortex Dislocations in Wake-Type Flow Induced by Spanwise Disturbances, Phys. Fluids, vol. 21, 073604, 2009.
  • V. D. Narasimhamurthy, H. Anderson, and B. Pettersen Cellular Vortex Shedding behind a Tapered Circular Cylinder, Phys. Fluids, vol. 21, 044106, 2009.
  • S. Behara and S. Mittal Flow Past a Circular Cylinder at Low Reynolds Number: Oblique Vortex Shedding, Phys. Fluids, vol. 22, 054102, 2010.
  • P. J. Deshpande and S. D. Sharma Spanwise Vortex Dislocation in the Wake of Segmented Blunt Trailing Edge, J. Fluids Struct., vol. 34, pp. 202–217, 2012.
  • S. F. M. Razali, T. Zhou, A. Rinoshika, and L. Cheng Wavelet Analysis of the Turbulent Wake Generated by an Inclined Circular Cylinder, J. Turbulence, vol. 11, no. 15, 2010.
  • C. H.K. Williamson Vortex Dynamics in the Cylinder Wake, Ann. Rev. Fluid Mech., vol. 28, pp. 477–539, 1996.
  • K. Noto and M. Honda Coherent Motion of Turbulent Thermal Plume in Stably Stratified Fluid, Fluid Dynamics Research, vol. 3, pp. 415–421, 1988.
  • K. Noto Dependence of Heat Island Phenomena of Stable Stratification and Heat Quantity in a Calm Environment, Atmos. Environ., vol. 30, pp. 475–485, 1996.
  • K. Noto and Y. Meguro Thermal Plume Turbulent Enhancement, Reverse Transition, and Relaminarization in Stably Stratified Enclosure, AIAA J. Thermophys. Heat Transfer, vol. 15, pp. 55–63, 2001.
  • J. C. LaRue Detection of the Turbulent-Nonturbulent Interface in Slightly Heated Turbulent Shear Flows, Phys. Fluids, vol. 17, pp. 1513–1517, 1974.
  • C. S. Subramanian and R. A. Antonia Effect of Reynolds Number on a Slight Heated Turbulent Boundary Layer, Int. J. Heat Mass Transfer, vol. 24, pp. 1833–1846, 1981.
  • Z. Warhaft Passive Scalars in Turbulent Flows, Annu. Rev. Fluid Mech., vol. 32, pp. 203–240, 2000.
  • K. Noto Cooled Vortex Street with Large Vortex Spirals Generated by Cooling a Circular Cylinder at Low Reynolds Number: Effects of Fluid Kinds on Wake Patterns, Numer. Heat Transfer A, vol. 53, pp. 1054–1073, 2008.
  • C. A. J. Fletcher Computational Techniques for Fluid Dynamics, vol. 1, Springer-Verlag, Berlin, 1988.
  • K. Noto and K. Nakai Direct Numerical Simulation of Turbulent Thermal Plume in Stably Stratified Ambient: Formulation, Numerical Methodology, Reverse Transition, Relaminarization, and Turbulent Enhancement, Numer. Heat Transfer B, vol. 53, pp. 313–357, 2008.
  • L. A. Segel and J. L. Jackson Dissipative Structure: an Explanation and an Ecological Example, J. Theor. Biol., vol. 37, pp. 545–549, 1972.
  • D. L. Benson, J. A. Sherratt, and P. K. Maini Diffusion Driven Instability in an Inhomogeneous Domain, Bull. Math. Biol., vol. 55, pp. 365–384, 1993.
  • B. Gebhart, Y. Jaluria, R. Mahajan, and B. Sammakia Buoyancy-Induced Flows and Transport, Hemisphere, New York, pp. 604–606, 1988.
  • K. Noto and K. Teramoto Spectra and Critical Grashof Numbers for Turbulent Transition in a Thermal Plume, AIAA J. Thermophys. Heat Transfer, vol. 13, pp. 82–90, 1999.
  • K. Noto Swaying Motion in Thermal Plume Above a Horizontal Line Heat Source, AIAA J. Thermophys. Heat Transfer, vol. 3, pp. 428–434, 1989.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.