Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 70, 2016 - Issue 2
87
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Development of a symplectic and phase error reducing perturbation finite-difference advection scheme

, &
Pages 136-151 | Received 13 Feb 2015, Accepted 10 Aug 2015, Published online: 09 Aug 2016

References

  • Z. Kopal, Numerical Analysis, 2d ed., John Wiley, New York, 1961.
  • D. Gaitonde and J. S. Shang, Optimized Compact-Difference-Based Finite-Volume Schemes for Linear Wave Phenomena, J. Comput. Phys., vol. 138, pp. 617–643, 1997.
  • C. K. W. Tam and J. C. Webb, Dispersion-Relation-Preserving Finite Difference Schemes for Computational Acoustics, J. Comput. Phys., vol. 107, pp. 262–281, 1993.
  • K. Y. Fung, R. S. O. Man, and S. Davis, Implicit High-Order Compact Algorithm for Computational Acoustics, AIAA J., vol. 34, pp. 2029–2038, 1996.
  • R. Hixon and E. Turkel, Compact Implicit MacCormack-Type Schemes with High Accuracy for Acoustics, J. Comput. Phys., vol. 158, pp. 51–70, 2000.
  • S. K. Lele, Compact Finite Difference Schemes with Spectral-Like Resolution, J. Comput. Phys., vol. 103, pp. 16–42, 1992.
  • R. V. Wilson, A. O. Demuren, and M. Carpenter, Higher-Order Compact Schemes for Numerical Simulation of Incompressible Flows, Part II: Applications, Numer. Heat Transfer B, vol. 39(3), pp. 231–255, 2001.
  • M. Visbal and D. Gaitonde, On the Use of High-Order Finite-Difference Schemes on Curvilinear and Deforming Meshes, J. Comput. Phys., vol. 181, pp. 155–185, 2002.
  • K. Zhang, M. Yang, and Y. W. Zhang, A compact Finite-Difference Scheme Based on the Projection Method for Natural-Convection Heat Transfer, Numer. Heat Transfer B, vol. 61, pp. 259–278, 2012.
  • S. Zhai, X. Feng, and D. Liu, A Novel Method to Deduce a High-Order Compact Difference Scheme for the Three-Dimensional Semilinear Convection-Diffusion Equation with Variable Coefficients, Numer. Heat Transfer B, vol. 63, pp. 425–455, 2013.
  • Y. Ma and D. Fu, Fourth Order Accurate Compact Scheme with Group Velocity Control (GVC), Sci. China, vol. 44, pp. 1197–1204, 2001.
  • P. H. Chiu, Tony W.H. Sheu, and R. K. Lin, Development of a dispersion Relation-Preserving Upwinding Scheme for Incompressible Navier-Stokes Equations on Nonstaggered Grids, Numer. Heat Transfer B., vol. 48, pp. 543–569, 2005.
  • M. Popescu and W. Shyy, Assessment of Dispersion-Relation-Preserving and Space-Time CE/SE Schemes for Wave Equations, Numer. Heat Transfer B., vol. 42, pp. 93–118, 2002.
  • T. K. Sengupta, V. Lakshmanan, and V. V. S. N. Vijay, A New Combined Stable and Dispersion Relation Preserving Compact Scheme for Non-Periodic Problems, J. Comput. Phys. vol. 228, pp. 3048–3071, 2009.
  • A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, Uniformly High Order Accurate Essentially Non-Oscillatory Schemes, III, J. Comput. Phys., vol. 131, pp. 3–47, 1997.
  • C. W. Shu and S. Osher, Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Scheme, J. Comput. Phys., vol. 77, pp. 439–471, 1988.
  • X. D. Liu, S. Osher, and T. Chan, Weighted Essentially Non-Oscillatory Schemes, J. Comput. Phys., vol. 115, pp. 200–212, 1994.
  • G. S. Jiang and C. W. Shu, Efficient Implementation of Wighted ENO Scheme, J. Comput. Phys., vol. 126, pp. 202–228, 1996.
  • B. Cockburn, S. Y. Lin, and C. W. Shu, TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws III: One-Dimensional Systems, J. Comput. Phys., vol. 84, pp. 90–113, 1989.
  • B. Cockburn and C. W. Shu, The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems, SIAM J. Numer. Anal., vol. 35, pp. 2440–2463, 1998.
  • Z. Gao, Advances in Perturbational Finite Difference Method, Adv. Mech., vol. 30, pp. 200–215, 2000.
  • G. B. Li, M. J. Li, and Z. Gao, The Pertubation Finite Difference (PFD) Scheme of Variational of Convection-Diffusion Equation, J. Hydrodyn. Ser. A, vol. 20, pp. 293–299, 2005.
  • M. Y. Yang, S. Shu, and M. J. Li, Numerical Pertubation Higher order Accuracy Reconstruction Scheme of 3-UDS for Convection-Diffusion Equation, J. Hydrodyn. Ser. A, vol. 25, pp. 307–315, 2010.
  • Z. Gao and G. W. Yang, Perturbation Finite Volume Method for the Convection-Diffusion Integral Equation, Acta Mech. Sin., vol. 20, pp. 580–590, 2004.
  • Z. Gao, H. Xiang, and Y. Q. Shen, Significance of Higher-Order Accuracy Reconstruction Approximation and Perturbational Finite Volume Method, Chinese J. Comput. Phys., vol. 21, pp. 131–136, 2004.
  • H. F. Dong, D. L. Zhang, and G. W. Yang, Perturbation Finite Volume Method and Application in Two-Phase Flows, Chinese J. Comput. Phys., vol. 26, pp. 857–864, 2009.
  • Y. Shen, G. Yang, and Z. Gao, High-Resolution Finite Compact Difference Schemes for Hyperbolic Conservation laws, J. Comput. Phys., vol. 216, pp. 114–137, 2006.
  • Y. Q. Shen and G. W. Yang, Hybrid Finite Compact-WENO Schemes for Shock Calculation, Int. J. Numer. Meth. Fluids, vol. 53, pp. 531–560, 2007.
  • Z. H. Wan, L. Zhou, and D. J. Sun, Robustness of the Hybrid DRP-WENO Scheme for Shock Flow Computations, Int. J. Numer. Meth. Fluids, vol. 70, pp. 985–1003, 2012.
  • L. Kang and C. H. Lee, An Efficient Low-Dissipative WENO Filter Scheme, Int. J. Numer. Meth. Fluids, vol. 69, pp. 273–293, 2012.
  • R. I. McLachlan, Area Preservation in Computational Fluid Dynamics, Phys. Lett. A, vol. 264, pp. 36–44, 1999.
  • Z. Y. Wang, J. M. Yang, B. Koo, and F. Stern, A Coupled Level Set and Volume-of-Fluid Method for Sharp Interface Simulation of Plunging Breaking Waves, Int. J. Multiphase Flows, vol. 35, pp. 227–246, 2009.
  • S. T. Zalesak, Fully Multidimensional Flux-Corrected Transport Algorithms for Fluids, J. Comput. Phys., vol. 31, pp. 335–362, 1979.
  • A. Quarteroni, F. Saleri, and A. Veneziani, Factorization Methods for the Numerical Approximation of Navier-Stokes Equations, Comput. Meth. Appl. Mech. Eng., vol. 188, pp. 505–526, 2000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.