Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 69, 2016 - Issue 4
331
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of a hybrid nanofluid exposed to radiation

&
Pages 271-286 | Received 09 Jul 2015, Accepted 05 Sep 2015, Published online: 23 Mar 2016

References

  • S. U. S. Choi and J. A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles, 1995 International Mechanical Engineering Congress and Exhibition, San Francisco, CA, 1995.
  • K. Khanafer and K. Vafai, A Critical Synthesis of Thermophysical Characteristics of Nanofluids, Int. J. Heat Mass Transfer, vol. 54, pp. 4410–4428, 2011.
  • R. Saidur, K. Y. Leong, and H. A. Mohammad, A Review on Applications and Challenges of Nanofluids, Renew. Sustain. Energy Rev., vol. 15, pp. 1646–1668, 2011.
  • Y. M. F. El Hasadi and J. M. Khodadadi, Numerical Simulation of the Effect of the Size of Suspensions on the Solidification Process of Nanoparticle-Enhanced Phase Change Materials, J. Heat Transfer, vol. 135, 052901, 2013.
  • N. S. Dhaidan, J. M. Khodadadi, T. A. Al-Hattab, and S. M. Al-Mashat, Experimental and Numerical Investigation of Melting of Phase Change Material/Nanoparticle Suspensions in a Square Container Subjected to a Constant Heat Flux, Int. J. Heat Mass Transfer, vol. 66, pp. 672–683, 2013.
  • O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, Solar Vapor Generation Enabled by Nanoparticles, ACS Nano, vol. 7, no. 1, pp. 42–49, 2013.
  • O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, Compact Solar Autoclave Based on Steam Generation Using Broadband Light-Harvesting Nanoparticles, Proc. Natl. Acad. Sci. USA, vol. 110, pp. 11677–11681, 2013.
  • Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. J. García de Abajo, P. Nordlander, and N. J. Halas, Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle, Nano Lett., vol. 13, pp. 1736–1742, 2013.
  • M. Lomascolo, G. Colangelo, M. Milanese, and A. de Risi, Review of Heat Transfer in Nanofluids: Conductive, Convective and Radiative Experimental Results, Renew. Sustain. Energy Rev., vol. 43, pp. 1182–1198, 2015.
  • A. Kasaeian, A. T. Eshghi, and M. Sameti, A Review on the Applications of Nanofluids in Solar Energy Systems, Renew. Sustain. Energy Rev., vol. 43, pp. 584–598, 2015.
  • H. Tyagi, P. Phelan, and R. Prasher, Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector, J. Solar Energy Eng., vol. 131, 041004, 2009.
  • T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, and R. A. Taylor, Nanofluid-Based Direct Absorption Solar Collector, J. Renew. Sustain. Energy, vol. 2, 033102, 2010.
  • R. A. Taylor, P. E. Phelan, T. P. Otanicar, R. Adrian, and R. Prasher, Nanofluid Optical Property Characterization: Towards Efficient Direct Absorption Solar Collectors, Nanoscale Res. Lett., vol. 6, p. 225, 2011.
  • R. A. Taylor, P. E. Phelan, R. J. Adrian, A. Gunawan, and T. P. Otanicar, Characterization of Light-Induced, Volumetric Steam Generation in Nanofluids, Int. J. Thermal Sci., vol. 56, pp. 1–11, 2012.
  • A. Lenert and E. N. Wang, Optimization of Nanofluid Volumetric Receivers for Solar Thermal Energy Conversion, Solar Energy, vol. 86, pp. 253–265, 2012.
  • R. Saidur, T. C. Meng, Z. Said, M. Hasanuzzaman, and A. Kamyar, Evaluation of the Effect of Nanofluid-Based Absorbers on Direct Solar Collector, Int. J. Heat Mass Transfer, vol. 55, pp. 5899–5907, 2012.
  • T. Yousefi, F. Veysi, E. Shojaeizadeh, and S. Zinadini, An Experimental Investigation on the Effect of Al2O3–H2O Nanofluid on the Efficiency of Flat-Plate Solar Collectors, Renew. Energy, vol. 39, pp. 293–298, 2012.
  • T. Yousefi, F. Veisy, E. Shojaeizadeh, and S. Zinadini, An Experimental Investigation on the Effect of MWCNT-H2O Nanofluid on the Efficiency of Flat-Plate Solar Collectors, Exp. Thermal Fluid Sci., vol. 39, pp. 207–212, 2012.
  • S. W. Lee, K. M. Kim, and I. C. Bang, Study on Flow Boiling Critical Heat Flux Enhancement of Graphene Oxide/Water Nanofluid, Int. J. Heat Mass Transfer, vol. 65, pp. 348–356, 2013.
  • L. Zhang, L. Fan, Z. Yu, and K. Cen, An Experimental Investigation of Transient Pool Boiling of Aqueous Nanofluids with Graphene Oxide Nanosheets as Characterized by the Quenching Method, Int. J. Heat Mass Transfer, vol. 73, pp. 410–414, 2014.
  • E. Sani, L. Mercatelli, S. Barison, C. Pagura, F. Agresti, L. Colla, and P. Sansoni, Potential of Carbon Nanohorn-Based Suspensions for Solar Thermal Collectors, Solar Energy Mater. Solar Cells, vol. 95, pp. 2994–3000, 2011.
  • Y. Li, H. Q. Xie, W. Yu, and J. Li, Investigation on Heat Transfer Performances of Nanofluids in Solar Collector, Materials Science Forum, pp. 33–36, 2011.
  • Y. He, S. Wang, J. Ma, F. Tian, and Y. Ren, Experimental Study on the Light-Heat Conversion Characteristics of Nanofluids, Nanosci. Nanotechnol. Lett., vol. 3, pp. 494–496, 2011.
  • V. Khullar, H. Tyagi, P. E. Phelan, T. P. Otanicar, H. Singh, and R. A. Taylor, Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector, J. Nanotechnol. Eng. Med., vol. 3, 031003, 2013.
  • P. B. Johnson and R. W. Christy, Optical Constants of the Noble Metals, Phys. Rev. B, vol. 6, pp. 4370–4379, 1972.
  • M. Polyanskiy, Refractive Index Database, http://refractiveindex.info/?shelf=main&book=Au&page=Hagemann, accessed 29 May 2014.
  • P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine, J. Phys. Chem. B, vol. 110, pp. 7238–7248, 2006.
  • I. K. Tjahjono and Y. Bayazitoglu, Near-Infrared Light Heating of a Slab by Embedded Nanoparticles, Int. J. Heat Mass Transfer, vol. 51, pp. 1505–1515, 2008.
  • M. M. Miller and A. A. Lazarides, Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment, J. Phys. Chem. B, vol. 109, pp. 21556–21565, 2005.
  • C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley, New York, 1983.
  • C. Matzler, 2002, MATLAB Functions for Mie Scattering and Absorption, Res. Rep. No. 2002–08, http://arrc.ou.edu/~rockee/NRA_2007_website/Mie-scattering-Matlab.pdf, accessed 19 Mar 2014.
  • Y. Bayazitoglu, S. Kheradmand, and T. K. Tullius, An Overview of Nanoparticle Assisted Laser Therapy, Int. J. Heat Mass Transfer, vol. 67, pp. 469–486, 2013.
  • Y. Bayazitoglu, S. Kheradmand, and T. K. Tullius, Thermal Therapy with Metal Nanoparticle Assisted Laser Heating, 7th International Symposium of Radiative Transfer, Kusadasi, Turkey, RAD–13–D1, 2013.
  • Y. Bayazitoglu, Volumetric Laser or Solar Heating with Plasmonic Nanoparticle, 15th International Heat Transfer Conference, Kyoto, Japan, pp. IHTC–15, IHTC15–KN20, 2014.
  • J. Vera and Y. Bayazitoglu, Gold Nanoshell Density Variation with Laser Power for Induced Hyperthermia, Int. J. Heat Mass Transfer, vol. 52, pp. 564–573, 2009.
  • J. Vera and Y. Bayazitoglu, Note on Laser Penetration in Nanoshell Deposited Tissue, Int. J. Heat Mass Transfer, vol. 52, pp. 3402–3406, 2009.
  • X. Xu, A. Meade, and Y. Bayazitoglu, Numerical Investigation of Nanoparticle-Assisted Laser-Induced Interstitial Thermotherapy Toward Tumor and Cancer Treatments, Lasers Med. Sci., vol. 26, pp. 213–222, 2011.
  • M. Shah, V. D. Badwaik, and R. Dakshinamurthy, Biological Applications of Gold Nanoparticles, J. Nanosci. Nanotechnol., vol. 14, pp. 344–362, 2014.
  • X. Xu, A. Meade, and Y. Bayazitoglu, Feasibility of Selective Nanoparticle-Assisted Photothermal Treatment for an Embedded Liver Tumor, Lasers Med. Sci., vol. 28, no. 4, pp. 1159–1168, 2012.
  • X. Xu, A. Meade, and Y. Bayazitoglu, Fluence Rate Distribution in Laser-Induced Interstitial Thermotherapy by Mesh Free Collocation, Int. J. Heat Mass Transfer, vol. 53, pp. 4017–4022, 2010.
  • X. Huang and M. A. El-Sayed, Gold Nanoparticles: Optical Properties and Implementations in Cancer Diagnosis and Photothermal Therapy, J. Adv. Res., vol. 1, pp. 13–28, 2010.
  • H. Zhang, H.-J. Chen, X. Du, G. Lin, and D. Wen, Dependence of Photothermal Conversion Characteristics on Different Nanoparticle Dispersions, J. Nanosci. Nanotechnol., vol. 15, pp. 3055–3060, 2015.
  • M. Sajid Hossain, R. Saidur, M. F. Mohd Sabri, Z. Said, and S. Hassani, Spotlight on Available Optical Properties and Models of Nanofluids: A Review, Renew. Sustain. Energy Rev., vol. 43, pp. 750–762, 2015.
  • K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, Optical Spectroscopy of Graphene: From the Far Infrared to the Ultraviolet, Solid State Commun., vol. 152, pp. 1341–1349, 2012.
  • F. Zhou, D. Xing, Z. Ou, B. Wu, D. E. Resasco, and W. R. Chen, Cancer Photothermal Therapy in the Near-Infrared Region by Using Single-Walled Carbon Nanotubes, J. Biomed. Opt., vol. 14, 021009, 2009.
  • J. W. Fisher, S. Sarkar, C. F. Buchanan, C. S. Szot, J. Whitney, H. C. Hatcher, S. V. Torti, C. G. Rylander, and M. N. Rylander, Photothermal Response of Human and Murine Cancer Cells to Multiwalled Carbon Nanotubes after Laser Irradiation, Cancer Res., vol. 70, pp. 9855–9864, 2010.
  • X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors, Science, vol. 319, pp. 1229–1232, 2008.
  • L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, Narrow Graphene Nanoribbons from Carbon Nanotubes, Nature, vol. 458, pp. 877–880, 2009.
  • L. Feng and Z. Liu, Graphene in Biomedicine: Opportunities and Challenges, Nanomedicine, vol. 6, pp. 317–324, 2011.
  • K. Yang, Feng L., X. Shi, and Z. Liu, Nano-graphene in Biomedicine: Theranostic Applications, Chem. Soc. Rev., vol. 42, pp. 530–547, 2013.
  • J. Sarkar, P. Ghosh, and A. Adil, A Review on Hybrid Nanofluids: Recent Research, Development and Applications, Renew. Sustain. Energy Rev., vol. 43, pp. 164–177, 2015.
  • M. F. Modest, Radiative Heat Transfer, 2nd Ed., Academic Press, 2003.
  • H. Buiteveld, J. M. H. Hakvoort, M. Donze, The Optical Properties of Pure Water, SPIE Proceedings on Ocean Optics XII, vol. 2258, pp. 174–183, 1994.
  • G. M. Hale and M. R. Querry, Optical Constants of Water in the 200-nm to 200-microm Wavelength Region, Appl. Opt., vol. 12, pp. 555–563, 1973.
  • R. D. Averitt, S. L. Westcott, and N. J. Halas, Linear Optical Properties of Gold Nanoshells, J. Opt. Soc. Am. B, vol. 16, p. 1824, 1999.
  • C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, Nanoshell-Enabled Photonics-Based Imaging and Therapy of Cancer, Technol. Cancer Res. Treat., vol. 3, pp. 33–40, 2004.
  • B. T. Draine and P. J. Flatau, Discrete-Dipole Approximation for Scattering Calculations, J. Opt. Soc. Am. A, vol. 11, p. 1491, 1994.
  • S. Link and M. A. El-Sayed, Shape and Size Dependence of Radiative, Non-radiative and Photothermal Properties of Gold Nanocrystals, Int. Rev. Phys. Chem., vol. 19, pp. 409–453, 2000.
  • P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine, J. Phys. Chem. B, vol. 110, pp. 7238–7248, 2006.
  • E. Lidorikis and A. C. Ferrari, Photonics with Multiwall Carbon Nanotube Arrays, ACS Nano, vol. 3, pp. 1238–1248, 2009.
  • F. Vialla, C. Roquelet, B. Langlois, G. Delport, S. M. Santos, E. Deleporte, P. Roussignol, C. Delalande, C. Voisin, and J.-S. Lauret, Chirality Dependence of the Absorption Cross Section of Carbon Nanotubes, Phys. Rev. Lett., vol. 111, 137402, 2013.
  • H. Butt, T. D. Wilkinson, and Amaratunga G. A. J., FEM Modeling of Periodic Arrays of Multiwalled Carbon Nanotubes, Prog. Electromagn. Res. M, vol. 22, pp. 1–12, 2012.
  • A. B. Djurišić and E. H. Li, Optical Properties of Graphite, J. Appl. Phys., vol. 85, p. 7404, 1999.
  • Y. Bayazitoglu and N. M. Ozisik, A Textbook for Heat Transfer Fundamentals, Begell House Inc., New York and Connecticut, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.