Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 70, 2016 - Issue 2
264
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

An investigation on the flow and heat transfer characteristics of nanofluids by nonequilibrium molecular dynamics simulations

, , &
Pages 152-163 | Received 27 Jan 2016, Accepted 11 Mar 2016, Published online: 17 Aug 2016

References

  • Y. M. Xuan and Q. Li, Investigation on Convective Heat Transfer and Flow Features of Nanofluids, J. Heat Transfer, vol. 125, pp. 151–155, 2003.
  • D. Wen and Y. Ding, Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region under Laminar Flow Conditions, Int. J. Heat Mass Transfer, vol. 47, pp. 5181–5188, 2004.
  • K. B. Anoop, T. Sundararajan, and S. K. Das, Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region, Int. J. Heat Mass Transfer, vol. 52, pp. 2189–2195, 2009.
  • W. Duangthongsuk and S. Wongwises, An Experimental Study on the Heat Transfer Performance and Pressure Drop of TiO2–Water Nanofluids Flowing under a Turbulent Flow Regime, Int. J. Heat Mass Transfer, vol. 53, pp. 334–344, 2010.
  • M. Nasiri, S. G. Etemad, and R. Bagheri, Experimental Heat Transfer of Nanofluid Through an Annular Duct, Int. J. Heat Mass Transfer, vol. 38, pp. 958–963, 2011.
  • M. M. Heyhat, F. Kowsary, A. M. Rashidi, M. H. Momenpour, and A. Amrollahi, Experimental Investigation of Laminar Convective Heat Transfer and Pressure Drop of Water-based Al2O3 Nanofluids in Fully Developed Flow Regime, Exp. Therm. Fluid Sci., vol. 44, pp. 483–489, 2013.
  • A. A. R. Darzi, M. Farhadi, K. Sedighi, R. Shafaghat, and K. Zabihi, Experimental Investigation of Turbulent Heat Transfer and Flow Characteristics of SiO2/Water Nanofluid Within Helically Corrugated Tubes, Int. J. Heat Mass Transfer, vol. 39, pp. 1425–1434, 2012.
  • M. Saeedinia, M. A. Akhavan-Behabadi, and M. Nasr, Experimental Study on Heat Transfer and Pressure Drop of Nanofluid Flow in a Horizontal Coiled Wire Inserted Tube under Constant Heat Flux, Exp. Therm. Fluid Sci., vol. 36, pp. 158–168, 2012.
  • B. C. Pak and Y. I. Cho, Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles, Exp. Heat Transfer, vol. 11, pp. 151–170, 1998.
  • K. S. Hwang, S. P. Jang, and S. U. S. Choi, Flow and Convective Heat Transfer Characteristics of Water-based Al2O3 Nanofluids in Fully Developed Laminar Flow Regime, Int. J. Heat Mass Transfer, vol. 52, pp. 193–199, 2009.
  • W. Cui, M. Bai, J. Lv, L. Zhang, G. Li, and M. Xu, On the Flow Characteristics of Nanofluids by Experimental Approach and Molecular Dynamics Simulation, Exp. Therm. Fluid Sci., vol. 39, pp. 148–157, 2012.
  • H. Q. Xie and L. F. Chen, Mechanism of Enhanced Convective Heat Transfer Coefficient of Nanofluids, Acta Phys. Sin., vol. 58, pp. 2513–2517, 2009.
  • A. Behzadmehr, M. Saffar-Avval, and N. Galanis, Prediction of Turbulent Forced Convection of a Nanofluid in a Tube with Uniform Heat Flux using a Two Phase Approach, Int. J. Heat Mass Transfer, vol. 28, pp. 211–219, 2007.
  • V. Bianco, O. Manca, and S. Nardini, Numerical Investigation on Nanofluids Turbulent Convection Heat Transfer Inside a Circular Tube, Int. J. Therm. Sci., vol. 50, pp. 341–349, 2011.
  • A. Moghadassi, E. Ghomi and F. Parvizian, A Numerical Study of Water Based Al2O3 and Al2O3–Cu Hybrid Nanofluid Effect on Forced Convective Heat Transfer, Int. J. Therm. Sci., vol. 92, pp. 50–57, 2015.
  • M. Haghshenas Fard, M. N. Esfahany, and M. R. Talaie, Numerical Study of Convective Heat Transfer of Nanofluids in a Circular Tube Two-phase Model Versus Single-phase Model, Int. J. Therm. Sci., vol. 37, pp. 91–97, 2010.
  • M. Hejazian, M. K. Moraveji, and A. Beheshti, Comparative Study of Euler and Mixture Models for Turbulent Flow of Al2O3 Nanofluid Inside a Horizontal Tube, Int. J. Therm. Sci., vol. 52, pp. 152–158, 2014.
  • P. K. Singh, P. V. Harikrishna, T. Sundararajan, and S. K. Das, Experimental and Numerical Investigation into the Hydrodynamics of Nanofluids in Microchannels, Exp. Therm. Fluid Sci., vol. 42, pp. 174–186, 2012.
  • H. Bahremand, A. Abbassi, and M. Saffar-Avval, Experimental and Numerical Investigation of Turbulent Nanofluid Flow in Helically Coiled Tubes under Constant Wall Heat Flux using Eulerian–Lagrangian Approach, Powder Technol., vol. 269, pp. 93–100, 2015.
  • C. Z. Hu, P. Wang, M. L. Bai, J. Z. Lv, Y. Y. Wang, and X. J. Li. Numerical Study of Nanofluids Flow Characteristics using Les-Lagrange Method and Molecular Dynamics Simulation, ASME, 4th Int. Conf. Micro/Nanoscale Heat Mass Transfer, Hong Kong, China, American Society of Mechanical Engineers, New York, pp. V001T02A001, 2013.
  • W. Peng, B. Minli, L. Jizu, Z. Liang, C. Wenzheng, and L. Guojie, Comparison of Multidimensional Simulation Models for Nanofluids Flow Characteristics, Numer. Heat Transfer B Fund., vol. 63, pp. 62–83, 2013.
  • W. J. Zhou, H. B. Luan, J. Sun, Y. L. He, and W. Q. Tao, A Molecular Dynamics and Lattice Boltzmann Multiscale Simulation for Dense Fluid Flows, Numer. Heat Transfer B Fund., vol. 61, pp. 369–386, 2012.
  • M. Darbandi, S. Moslem, and J. Somaye, Thermal Wall Model Effect on the Lid-Driven Nanocavity Flow Simulation using the Molecular Dynamics Method, Numer. Heat Transfer B Fund., vol. 63, pp. 248–261, 2013.
  • L. Chen, Y. L. He, and W. Q. Tao, The Temperature Effect on the Diffusion Processes of Water and Proton in the Proton Exchange Membrane Using Molecular Dynamics Simulation, Numer. Heat Transfer A Appl., vol. 65, pp. 216–228, 2014.
  • W. J. Zhou, Z. Q. Yu, Z. Z. Li, Y. L. He, and W. Q. Tao, Molecular Dynamics–Continuum Hybrid Simulation for the Impingement of Droplet on a Liquid Film, Numer. Heat Transfer A Appl., vol. 68, pp. 512–525, 2015.
  • S. L. Lee, R. Saidur, M. F. M. Sabri, and T. K. Min, Molecular Dynamic Simulation on the Thermal Conductivity of Nanofluids in Aggregated and Non-Aggregated States, Numer. Heat Transfer A Appl., vol. 68, pp. 432–453, 2015.
  • S. L. Lee, R. Saidur, M. F. M. Sabri, and T. K. Min, Molecular Dynamic Simulation: Studying the Effects of Brownian Motion and Induced Micro-Convection in Nanofluids, Numer. Heat Transfer A Appl., vol. 69, pp. 643–658, 2016.
  • C. Hu, M. Bai, J. Lv, P. Wang, L. Zhang, and X. Li, Molecular Dynamics Simulation of Nanofluids Flow Behaviors in the Near-wall Model and Main Flow Model, Microfluid. Nanofluid., vol. 17, pp. 581–589, 2014.
  • W. Cui, Z. Shen, J. Yang, and S. Wu, Effect of Chaotic Movements of Nanoparticles for Nanofluid Heat Transfer Augmentation by Molecular Dynamics Simulation, Appl. Therm. Eng., vol. 76, pp. 261–271, 2015.
  • C. Sun, W. Lu, J. Liu, and B. Bai, Molecular Dynamics Simulation of Nanofluids Effective Thermal Conductivity in High-shear-rate Couette Flow, Int. J. Heat Mass Transfer, vol. 54, pp. 2560–2567, 2011.
  • W. Hoover, Canonical Dynamics: Equilibrium Phase-space Distributions, Phys. Rev. A, vol. 31, pp. 1695–1697, 1985.
  • W. Cui, M. Bai, J. Lv, G. Li, and X. Li, On the Influencing Factors and Strengthening Mechanism for Thermal Conductivity of Nanofluids by Molecular Dynamics Simulation, Ind. Eng. Chem. Res., vol. 50, pp. 13568–13575, 2011.
  • J. Eapen, J. Li, and S. Yip, Mechanism of Thermal Transport in Dilute Nanocolloids, Phys. Rev. Lett., vol. 98, pp. 028302, 2007.
  • Z. Shi, M. Barisik, and A. Beskok, Molecular Dynamics Modeling of Thermal Resistance at Argon–Graphite and Argon–Silver Interfaces, Int. J. Therm. Sci., vol. 59, pp. 29–37, 2012.
  • C. Sun, W. Q. Lu, B. Bai, and J. Liu, Anomalous Enhancement in Thermal Conductivity of Nanofluid Induced by Solid Walls in a Nanochannel, Appl. Therm. Eng., vol. 31, pp. 3799–3805, 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.