Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 70, 2016 - Issue 2
115
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Application of the PDF transport model to nonreacting jets using an adaptive Monte Carlo method

Pages 91-110 | Received 04 Nov 2015, Accepted 11 Mar 2016, Published online: 24 Jun 2016

References

  • S. B. Pope, A Monte Carlo Method for the PDF Equations of Turbulent Reactive Flow, Combust. Sci. Tech., vol. 25, pp. 159–174, 1981.
  • J. Janicka and N. Peters, Prediction of Turbulent Jet Diffusion Flame Lift-off using a PDF Transport Equation, 19th Symp (Int) on Combustion, The Combustion Institute, pp. 367–374, 1982.
  • R. R. Cao, S. B. Pope, and A. R. Masri, Turbulent Lifted Flames in a Vitiated Coflow Investigated using Joint PDF Calculations, Combust. Flame, vol. 142, pp. 438–453, 2005.
  • G. Li and M. F. Modest, Application of Composition PDF Methods in the Investigation of Turbulence–Radiation interactions, J. Quant. Spec. Radiat. Transfer, vol. 73, pp. 461–472, 2002.
  • S. Mazumder and M. F. Modest, A PDF Approach to Modelling Turbulence–Radiation Interactions in Nonluminous Flames, Int. J. Heat Mass Transfer, vol. 42, pp. 971–991, 1998.
  • P. S. Cumber and O. Onokpe, Turbulent–Radiation Interaction in Jet Flames: Sensitivity to the PDF, Int. J. Heat Mass Transfer, vol. 57, pp. 250–264, 2013.
  • P. S. Cumber, Efficient Modelling of Turbulence–Radiation Interaction in Hydrogen Jet Flames, Numer. Heat Transfer B, vol. 63, pp. 85–114, 2013.
  • R. F. Alvani and M. Fairweather, Ignition Characteristics of Turbulent Jet Flows, Trans. IChemE A, vol. 80, pp. 917–923, 2002.
  • S. Subramaniam and S. B. Pope, A Mixing Model for Turbulent Reactive Flows Based on a Euclidean Minimum Spanning Trees, Combust. Flame, vol. 115, pp. 487–514, 1998.
  • K. Tsai and R. O. Fox, The BMC/GIEM Model for Micro Mixing in Non-premixed Turbulent Reacting Flows, Ind. Eng. Chem. Res., vol. 37, pp. 2131–2141, 1998.
  • P. Gerlinger and D. Bruggemann, Comparison of Eulerian and Lagrangian Monte-Carlo PDF Methods for Turbulent Diffusion Flames, Combust. Flame, vol. 124, pp. 519–534, 2001.
  • B. Lapeyre, E. Pardoux, and R. Sentis, Introduction to Monte-Carlo Methods for Transport and Diffusion Equations, Oxford University Press, Great Britain, 2003.
  • S. B. Pope, Computationally Efficient Implementation of Combustion Chemistry using in situ Adaptive Tabulation, Combust. Theor. Model., vol. 1, pp. 41–63, 1997.
  • C. H. Wang, Y. Zhang, H. L. Yi, and H. P. Tan, Transient Radiative Transfer in Two-dimensional Graded Index Medium by Monte Carlo Method Combined with the Time Shift and Superposition Principle, Numer. Heat Transfer A, Appl., vol. 69, pp. 574–588, 2016.
  • Y. Zhang, B. Chen, D. Li, and G. X. Wang, Efficient and Accurate Simulation of Light Propagation in Bio-tissues using the Three-dimensional Geometric Monte Carlo Method, Numer. Heat Transfer A, Appl., vol. 68, pp. 827–846, 2015.
  • V. N. S Bong and B. T. Wong, Solution of the Boltzmann Transport Equation for Photon Transport via the Speed-up Transient Monte Carlo Method using Reference Temperature, Numer. Heat Transfer B, Fund., vol. 66, pp. 827–846, 2014.
  • D. A. Olivieri, M. Fairweather, and S. A. E. G. Falle, An Adaptive Mesh Refinement Method for Solution of the Transported PDF Equation, Int. J. Numer. Meth. Eng., vol. 79, pp. 1536–1556, 2009.
  • D. A. Olivieri, M. Fairweather, and S. A. E. G. Falle, Adaptive Mesh Refinement Applied to the Scalar Transported PDF Equation in a Turbulent Jet, Int. J. Numer. Meth. Eng., vol. 84, pp. 434–447, 2010.
  • D. A. Olivieri, M. Fairweather, and S. A. E. G. Falle, Rans Modelling of Intermittent Turbulent Flows using Adaptive Mesh Refinement Methods, J. Turbul., vol. 11, pp. 1–18, 2010.
  • P. S. Cumber, M. Fairweather, S. A. E. G. Falle, and J. R. Giddings, Body Capturing Impacting Supersonic Flows, Int. J. Heat Fluid Flow, vol. 19, pp. 23–30, 1998.
  • P. S. Cumber, Application of Adaptive Quadrature to Fire Modelling, Trans. ASME J. Heat Transfer, vol. 121, pp. 203–205, 1999.
  • R. L. Curl, Dispersed Phase Mixing: 1 Theory and Effects in Simple Reactors, AICHE J., vol. 9, pp. 175–181, 1963.
  • A. D. Birch, D. R. Brown, M. G. Dodson, and J. R. Thomas, The Turbulent Concentration Field of a Methane Jet, J. Fluid Mech., vol. 88, pp. 431–449, 1978.
  • D. B. Spalding, GENMIX: A General Computer Program for Two-dimensional Parabolic Phenomena, Pergamon Press, Oxford, 1977.
  • W. P. Jones and B. E. Launder, The Prediction of Laminarization with a Two Equation Model of Turbulence, Int. J. Heat Mass Transfer, vol. 15, pp. 301–314, 1972.
  • S. B. Pope, An Explanation of the Turbulent Round-jet/Plane-jet Anomaly, AIAA J., vol. 16, pp. 279–281, 1978.
  • J. B. Moss, C. D. Stewart, and K. Syed, Flow Field Modelling of Soot Formation at Elevated Pressure, 22nd Symp. (Int.) on Combustion, The Combustion Institute, pp. 413–423, 1988.
  • H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, the Finite Volume Method, Prentice Hall, Great Britain, 1995.
  • J. N. Siddall and Y. Dlab, The Use in Probabilistic Design of Probability Curves Generated by Maximising the Shannon Entropy Function Constrained by Moments, Trans. ASME J. Eng. Ind., vol. 97, pp. 843–852, 1975.
  • J. Xu and S. B. Pope, Assessment of Numerical Accuracy of PDF/Monte Carlo Methods for Turbulent Reactive Flows, J. Comp. Phys., vol. 152, pp. 192–230, 1999.
  • P. S. Cumber and M. Spearpoint, Modelling Lifted Methane Jet Fires using the Boundary Layer Equations, Numer. Heat Transfer B, Fund., vol. 49, pp. 239–258, 2006.
  • O. Onokpe and P. S. Cumber, Modelling Lifted Hydrogen Jet Fires using the Boundary Layer Equations, J. Appl. Thermal Eng., vol. 29, pp. 1383–1390, 2009.
  • O. Onokpe and P. S. Cumber, Predicting the Mean and RMS Fields in Subsonic Hydrogen Jet Fires, Fire Safety J., vol. 49, pp. 22–34, 2012.
  • R. F. Alvani and M. Fairweather, Prediction of the Ignition Characteristics of Flammable Jets using Intermittency-based Turbulence Models and a Prescribed PDF Approach, Comp. Chem. Eng., vol. 32, pp. 371–381, 2008.
  • P. S. Cumber and P Wilkinson, Signal Processing, Sobol Sequences and Hot Sampling: Calculation of Incident Heat Flux Distributions Surrounding Diffusion Flames, Int. J. Heat Mass Transfer, vol. 54, pp. 4689–4701, 2011.
  • P. S. Cumber, Accelerating Ray Convergence in Jet Fire Radiation Modelling using Sobol Sequences, Int. J. Thermal Sci., vol. 48, pp. 1338–1347, 2009.
  • I. M. Sobol, Uniformly Distributed Sequences with an Additional Uniform Property, USSR Comput. Math. Math. Phys., vol. 16, pp. 236–242, 1977.
  • I. A. Antonov and V. M. Saleev, An Economic Method of Computing LP tau-Sequences, USSR Comput. Math. Math. Phys., vol. 19, pp. 252–256, 1979.
  • J. C. Chai, S. L. Haeok, and S. V. Patankar, Ray Effect and False Scattering in the Discrete Ordinates Method, Numer. Heat Transfer B, vol. 24, pp. 373–389, 1993.
  • K. D. Lathrop, Remedies for Ray Effects, Nucl. Sci. Eng., vol. 45, pp. 255–268, 1971.
  • P. S. Cumber, Validation Study of a Turbulence Radiation Interaction Model: Weak, Intermediate and Strong TRI in Jet Flames, Int. J. Heat Mass Transfer, vol. 79, pp. 1034–1047, 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.