Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 70, 2016 - Issue 3
116
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

An atomistic Green’s function method hybrid with a substructure technique for coherent phonon analysis

, &
Pages 200-214 | Received 07 Jan 2016, Accepted 01 Apr 2016, Published online: 17 Aug 2016

References

  • A. Chattopadhyay and A. Pattamatta, A Comparative Study of Submicron Phonon Transport Using the Boltzmann Transport Equation and the Lattice Boltzmann Method, Numer. Heat Transfer B-Fund., vol. 66, no. 4, pp. 360–379, 2014.
  • V. N.-S. Bong and B. T. Wong, Solution of the Boltzmann Transport Equation for Phonon Transport Via the Speed-up Transient Monte Carlo Method Using Reference Temperature, Numer. Heat Transfer B-Fund., vol. 66, no. 3, pp. 281–306, 2014.
  • H. Ali and B. S. Yilbas, Phonon Transport in Silicon-Diamond Thin Film Pairs: Consideration of Thermal Boundary Resistance Due to Cutoff Mismatch and Diffusive Mismatch Models, Numer. Heat Transfer A-Appl., vol. 68, no. 12, pp. 1307–1330, 2015.
  • A. J. Minnich, Advances in the Measurement and Computation of Thermal Phonon Transport Properties, J. Phys. Condens. Matter, vol. 27, no. 5, p. 053202, 2015.
  • W. Zhang, T. S. Fisher, and N. Mingo, Simulation of Interfacial Phonon Transport in Si–Ge Heterostructures Using an Atomistic Green’s Function Method, J. Heat Transfer – T ASME, vol. 129, p. 483, 2007.
  • N. Mingo and L. Yang, Phonon Transport in Nanowires Coated with an Amorphous Material An Atomistic Green’s Function Approach, Phys. Rev. B, vol. 68, p. 245406, 2003.
  • Y. Xu, J.-S. Wang, W. Duan, B.-L. Gu, and B. Li, Nonequilibrium Green’s Function Method for Phonon–Phonon Interactions and Ballistic-Diffusive Thermal Transport, Phys. Rev. B, vol. 78, no. 22, p. 224303, 2008.
  • J. Li, T. C. Au Yeung, C. H. Kam, Y. Peng, Q. Chen, X. Zhao, and C. Q. Sun, Anharmonic Phonon Transport in Atomic Wire Coupled by Thermal Contacts with Surface Bond Reconstruction, J. Appl. Phys., vol. 106, no. 1, p. 014308, 2009.
  • N. Mingo, Anharmonic Phonon Flow Through Molecular-Sized Junctions, Phys. Rev. B, vol. 74, p. 125402, 2006.
  • Z. Tian, K. Esfarjani, and G. Chen, Green’s Function Studies of Phonon Transport across Si/Ge Superlattices, Phys. Rev. B, vol. 89, no. 23, p. 235307, 2014.
  • W. Zhang, N. Mingo, and T. S. Fisher, Simulation of Phonon Transport across a Non-Polar Nanowire Junction using an Atomistic Green’s Function Method, Phys. Rev. B, vol. 76, p. 195429, 2007.
  • Y. Chalopin, S. Volz, and N. Mingo, Upper Bound to the Thermal Conductivity of Carbon Nanotube Pellets, J. Appl. Phys., vol. 105, no. 8, p. 084301, 2009.
  • X.-F. Peng and K.-Q. Chen, Thermal Transport for Flexural and In-plane Phonons in Graphene Nanoribbons, Carbon, vol. 77, pp. 360–365, 2014.
  • M. Maldovan, Phonon Wave Interference and Thermal Bandgap Materials, Nat. Mater., vol. 14, no. 7, pp. 667–674, 2015.
  • K. T. Regner, D. P. Sellan, Z. Su, C. H. Amon, A. J. McGaughey, and J. A. Malen, Broadband Phonon Mean Free Path Contributions to Thermal Conductivity Measured Using Frequency Domain Thermoreflectance, Nat. Commun., vol. 4, p. 1640, 2013.
  • M. N. Luckyanova, J. Garg, K. Esfarjani, A. Jandl, M. T. Bulsara, A. J. Schmidt, A. J. Minnich, S. Chen, M. S. Dresselhaus, Z. Ren, E. A. Fitzgerald, and G. Chen, Coherent Phonon Heat Conduction in Superlattices, Science, vol. 338, no. 6109, pp. 936–939, 2012.
  • S. Alaie, D. F. Goettler, M. Su, Z. C. Leseman, C. M. Reinke, and I. El-Kady, Thermal Transport in Phononic Crystals and the Observation of Coherent Phonon Scattering at Room Temperature, Nat. Commun., vol. 6, p. 7228, 2015.
  • S. G. Volz and G. Chen, Molecular-Dynamics Simulation of Thermal Conductivity of Silicon Crystals, Phys. Rev. B, vol. 61, pp. 2651–2656, 2000.
  • S. Datta, Quantum Transport: Atom to Transistor, Cambridge University Press, Cambridge, 2005.
  • M. P. Anantram, M. S. Lundstrom, and D. E. Nikonov, Modeling of Nanoscale Devices, Proc. IEEE, vol. 96, no. 9, pp. 1511–1550, 2008.
  • D. Mamaluy, D. Vasileska, M. Sabathil, T. Zibold, and P. Vogl, Contact Block Reduction Method for Ballistic Transport and Carrier Densities of Open Nanostructures, Phys. Rev. B, vol. 71, p. 245321, 2005.
  • Y. M. Sabry, T. M. Abdolkader, and W. F. Farouk, Simulation of Quantum Transport in Double-Gate Mosfets Using the Non-Equilibrium Green’s Function Formalism in Real-Space: A Comparison of Four Methods, Int. J. Numer. Model., vol. 24, no. 4, pp. 322–334, 2011.
  • S. Birner, C. Schindler, P. Greck, M. Sabathil, and P. Vogl, Ballistic Quantum Transport Using the Contact Block Reduction (CBR) Method, J. Comput. Electron., vol. 8, pp. 267–286, 2009.
  • R. Cook, D. Malkus, M. Plesha, and R. Witt, Concepts and Applications of Finite Element Analysis, John Wiley and Sons, Inc., New York, NY, 2002.
  • H. W. Zhang, Z. Yao, J. B. Wang, and W. X. Zhong, Phonon Dispersion Analysis of Carbon Nanotubes Based on Inter-Belt Model and Symplectic Solution Method, Int. J. Solids Struct., vol. 44, no. 20, pp. 6428–6449, 2007.
  • Y. Gu, An Efficient Laplace Transform-Wave Packet Method Hybrid with Substructure Technique, Comp. Mater. Sci., vol. 110, pp. 345–352, 2015.
  • J. S. Wang, J. Wang, and J. T. Lu, Quantum Thermal Transport in Nanostructures, Eur. Phys. J. B, vol. 62, no. 4, pp. 381–404, 2008.
  • W. Zhang, T. S. Fisher, and N. Mingo, The Atomistic Green’s Function Method: An Efficient Simulation Approach for Nanoscale Phonon Transport, Numer. Heat Transfer B-Fund., vol. 51, no. 3/4, pp. 333–349, 2007.
  • S. Sadasivam, Y. Che, Z. Huang, L. Chen, S. Kumar, and T. S. Fisher, The Atomistic Green’s Function Method for Interfacial Phonon Transport, Ann. Rev. Heat Transfer, vol. 17, pp. 89–145, 2014.
  • P. E. Hopkins, P. M. Norris, M. S. Tsegaye, and A. W. Ghosh, Extracting Phonon Thermal Conductance Across Atomic Junctions: Nonequilibrium Green’s Function Approach Compared to Semiclassical Methods, J. Appl. Phys., vol. 106, no. 6, p. 063503, 2009.
  • M. Morooka, T. Yamamoto, and K. Watanabe, Defect-Induced Circulating Thermal Current in Graphene with Nanosized Width, Phys. Rev. B, vol. 77, no. 3, p. 033412, 2008.
  • M. T. Dove, Introduction to Lattice Dynamics, Cambridge University Press, Cambridge, 1993.
  • N. Mingo, Calculation of Si Nanowire Thermal Conductivity Using Complete Phonon Dispersion Relations, Phys. Rev. B, vol. 68, p. 113308, 2003.
  • C. Kittel, Introduction to Solid State Physics, Wiley, New York, 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.