Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 70, 2016 - Issue 6
108
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Micromixing model performance for nonreacting flows using a consistent Monte Carlo method

Pages 517-536 | Received 22 Mar 2016, Accepted 13 Jul 2016, Published online: 26 Oct 2016

References

  • S. B. Pope, A Monte Carlo Method for the PDF Equations of Turbulent Reactive Flow, Combust. Sci. Technol., vol. 25, pp. 159–174, 1981.
  • J. Janicka and N. Peters, Prediction of Turbulent Jet Diffusion Flame Lift-Off using a PDF Transport Equation, 19th Symp. (Int.) on Combustion, The Combustion Institute, pp. 367–374, 1982.
  • R. R. Cao, S. B. Pope, and A. R. Masri, Turbulent Lifted Flames in a Vitiated Coflow Investigated using Joint PDF Calculations, Combust. Flame, vol. 142, pp. 438–453, 2005.
  • G. Li and M. F. Modest, Application of Composition PDF Methods in the Investigation of Turbulence-Radiation Interactions, J. Quant. Spectrosc. Radiat. Transfer, vol. 73, pp. 461–472, 2002.
  • S. Mazumder and M. F. Modest, A PDF Approach to Modelling Turbulence-Radiation Interactions in Nonluminous Flames, Int. J. Heat Mass Transfer, vol. 42, pp. 971–991, 1998.
  • P. S. Cumber and O. Onokpe, Turbulent Radiation Interaction in Jet Flames: Sensitivity to the PDF, Int. J. Heat Mass Transfer, vol. 57, pp. 250–264, 2013.
  • P. S. Cumber, Efficient Modelling of Turbulence-Radiation Interaction in Hydrogen Jet Flames, Numer. Heat Transfer Part B, vol. 63, pp. 85–114, 2013.
  • P. S. Cumber, Validation Study of a Turbulence Radiation Interaction Model: Weak, Intermediate and Strong TRI in Jet Flames, Int. J. Heat Mass Transfer, vol. 79, pp. 1034–1047, 2014.
  • R. F. Alvani and M. Fairweather, Ignition Characteristics of Turbulent Jet Flows, Trans. IChemE Part A, vol. 80, pp. 917–923, 2002.
  • P. S. Cumber, Application of the PDF Transport Model to Non-Reacting Jets using an Adaptive Monte Carlo Method, Numer. Heat Transfer, Part B, vol. 70, pp. 91–110, 2016.
  • D. A. Olivieri, M. Fairweather, and S. A. E. G. Falle, An Adaptive Mesh Refinement Method for Solution of the Transported PDF Equation, Int. J. Numer. Methods Eng., vol. 79, pp. 1536–1556, 2009.
  • D. A. Olivieri, M. Fairweather, and S. A. E. G. Falle, Adaptive Mesh Refinement Applied to the Scalar Transported PDF Equation in a Turbulent Jet, Int. J. Numer. Methods Eng., vol. 84, pp. 434–447, 2010.
  • D. A. Olivieri, M. Fairweather, and S. A. E. G. Falle, Rans Modelling of Intermittent Turbulent Flows using Adaptive Mesh Refinement Methods, J. Turbul., vol. 11, pp. 1–18, 2010.
  • P. S. Cumber, M. Fairweather, S. A. E. G. Falle, and J. R. Giddings, Body Capturing Impacting Supersonic Flows, Int. J. Heat Fluid Flow, vol. 19, pp. 23–30, 1998.
  • P. S. Cumber and P. Wilkinson, Signal Processing, Sobol Sequences and Hot Sampling: Calculation of Incident Heat Flux Distributions Surrounding Diffusion Flames, Int. J. Heat Mass Transfer, vol. 54, pp. 4689–4701, 2011.
  • P. S. Cumber, Accelerating Ray Convergence in Jet Fire Radiation Modelling using Sobol Sequences, Int. J. Therm. Sci., vol. 48, pp. 1338–1347, 2009.
  • C. H. Wang, Y. Zhang, H. L. Yi, and H. P. Tan, Transient Radiative Transfer in Two-Dimensional Graded Index Medium by Monte Carlo Method Combined with the Time Shift and Superposition Principle, Numer. Heat Transfer Part A Appl., vol. 69, pp. 574–588, 2016.
  • Y. Zhang, B. Chen, D. Li, and G. X. Wang, Efficient and Accurate Simulation of Light Propagation in Bio-Tissues using the Three-Dimensional Geometric Monte Carlo Method, Numer. Heat Transfer Part A Appl., vol. 68, pp. 827–846, 2015.
  • V. N. S. Bong and B. T. Wong, Solution of the Boltzmann Transport Equation for Photon Transport via the Speed-up Transient Monte Carlo Method using Reference Temperature, Numer. Heat Transfer Part B Fundam., vol. 66, pp. 827–846, 2014.
  • R. L. Curl, Dispersed Phase Mixing: 1 Theory and Effects in Simple Reactors, AICHE J., vol. 9, pp. 175–181, 1963.
  • A. D. Birch, D. R. Brown, M. G. Dodson, and J. R. Thomas, The Turbulent Concentration Field of a Methane Jet, J. Fluid Mech., vol. 88, pp. 431–449, 1978.
  • H. A. Wouters, P. A. Nooren, T. W. J. Peeters, and D. Roekaerts, Effects of Micro-Mixing in Gas-Phase Turbulent Jets, Int. J. Heat Fluid Flow, vol. 19, pp. 201–207, 1998.
  • C. Dopazo, Probability Density Function Approach for a Turbulent Axisymmetric Heated Jet. Centreline Evolution, Phys. Fluids, vol. 18, pp. 175–181, 1975.
  • J. Janicka, W. Kolbe, and W. Kollmann, Closure of the Transport Equation for the Probability Density Function of Turbulent Scalar Fields, J. Non-Equilib. Thermodyn., vol. 4, pp. 47–66, 1979.
  • L. Valino and C. Dopazo, A Binomial Langevin Model for Turbulent Mixing, Phys. Fluids A, vol. 3, pp. 3034–3037, 1991.
  • H. Chen, S. Chen, and R. H. Kraichnan, Probability Distributions of a Stochastically Advected Scalar Field, Phys. Rev. Lett., vol. 63, pp. 2657–2660, 1989.
  • D. R. Dowling and P. E. Dimotakis, Similarity of the Concentration Field of Gas-Phase Turbulent Jets, J. Fluid Mech., vol. 218, pp. 109–141, 1990.
  • S. Subramaniam and S. B. Pope, A Mixing Model for Turbulent Reactive Flows based on a Euclidean Minimum Spanning Trees, Combust. Flame, vol. 115, pp. 487–514, 1998.
  • Z. Ren and S. B. Pope, An Investigation of the Performance of Turbulent Mixing Models, Combust. Flame, vol. 136, pp. 208–216, 2004.
  • V. Eswaran and S. B. Pope, Direct Numerical Simulations of the Turbulent Mixing of a Passive Scalar, Phys. Fluids, vol. 31, pp. 506–520, 1988.
  • D. B. Spalding, GENMIX: A General Computer Program for Two-Dimensional Parabolic Phenomena, Pergamon Press, Oxford, 1977.
  • W. P. Jones and B. E. Launder, The Prediction of Laminarization with a Two Equation Model of Turbulence, Int. J. Heat Mass Transfer, vol. 15, pp. 301–314, 1972.
  • S. B. Pope, An Explanation of the Turbulent Round-Jet/Plane-Jet Anomaly, AIAA J., vol. 16, pp. 279–281, 1978.
  • J. B. Moss, C. D. Stewart, and K. Syed, Flow Field Modelling of Soot Formation at Elevated Pressure, 22nd (Int.) on Combustion, The Combustion Institute, pp. 413–423, 1988.
  • D. C. Haworth, Progress in Probability Density Function Methods for Turbulent Reacting Flows, Prog. Energy Combust. Sci., vol. 36, pp. 168–259, 2010.
  • Z. Ren, S. Subramaniam, and S. B. Pope, Implementation of the EMST Mixing Model, http://tcg.mae.cornell.edu/emst, 2002.
  • B. Lapeyre, E. Pardoux, and R. Sentis, Introduction to Monte Carlo Methods for Transport and Diffusion Equations, Oxford University Press, Oxford, UK, 2003.
  • P. S. Cumber and M. Spearpoint, Modelling Lifted Methane Jet Fires using the Boundary Layer Equations, Numer. Heat Transfer Part B Fundam., vol. 49, pp. 239–258, 2006.
  • O. Onokpe and P. S. Cumber, Modelling Lifted Hydrogen Jet Fires using the Boundary Layer Equations, J. Appl. Therm. Eng., vol. 29, pp. 1383–1390, 2009.
  • O. Onokpe and P. S. Cumber, Predicting the Mean and RMS Fields in Subsonic Hydrogen Jet Fires, Fire Saf. J., vol. 49, pp. 22–34, 2012.
  • P. S. Cumber and M. Spearpoint, A Computational Flame Length Methodology for Propane Jet Fires, Fire Saf. J., vol. 41, pp. 215–228, 2006.
  • R. F. Alvani and M. Fairweather, Prediction of the Ignition Characteristics of Flammable Jets using Intermittency-Based Turbulence Models and a Prescribed PDF Approach, Comput. Chem. Eng., vol. 32, pp. 371–381, 2008.
  • A. D. Birch, D. R. Brown, M. G. Dodson, and J. R. Thomas, Studies of Flammability in Turbulent Flows using Laser Raman Spectroscopy, 17th Symp. (Int.) on Combustion, The Combustion Institute, pp. 307–314, 1979.
  • A. D. Birch, D. R. Brown, and M. G. Dodson, Ignition Probabilities in Turbulent Flows, 18th Symp. (Int.) on Combustion, The Combustion Institute, pp. 1775–1780, 1981.
  • M. T. E. Smith, A. D. Birch, D. R. Brown, and M. Fairweather, Studies of Ignition and Flame Propagation in Turbulent Jets of Natural Gas, Propane and a Gas with a High Hydrogen Content, 21st Symp. (Int.) on Combustion, The Combustion Institute, pp. 1403–1408, 1986.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.