Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 70, 2016 - Issue 5
158
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Numerical simulation model by volume averaging for the dissolution process of GaSb into InSb in a sandwich system

, , , , , , & show all
Pages 441-458 | Received 06 Apr 2016, Accepted 13 Jul 2016, Published online: 24 Oct 2016

References

  • P. S. Dutta, H. L. Bhat, and V. Kumar, The Physics and Technology of Gallium Antimonide: An Emerging Optoelectronic Material, J. Appl. Phys., vol. 81, pp. 5821–5870, 1997.
  • B. W. Webb and R. Viskanta, Analysis of Heat Transfer During Melting of a Pure Metal from an Isothermal Vertical Wall, Numer. Heat Transfer, vol. 9, pp. 539–558, 1986.
  • Z.-C. Hong and J.-H. Liou, Predicting Natural-Convection-Dominated Phase Change Problems by Control Volume Unstructured Triangular Grid: Applications to the Melting of Pure Metal, Numer. Heat Transfer Part A Appl., vol. 33, pp. 299–314, 1998.
  • V. R. Voller and C. Prakash, A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems, Int. J. Heat Mass Transfer, vol. 30, pp. 1709–1719, 1987.
  • C. Beckermann and R. Viskanta, Double-Diffusive Convection during Dendritic Solidification of a Binary Mixture, Physicochem. Hydrodyn., vol. 10, pp. 195–213, 1988.
  • V. R. Voller, A. D. Brent, and C. Prakash, The Modelling of Heat, Mass and Solute Transport in Solidification Systems, Int. J. Heat Mass Transfer, vol. 32, pp. 1719–1731, 1989.
  • W. D. Bennon and F. P. Incropera, A Continuum Model for Momentum, Heat and Species Transport in Binary Solid-Liquid Phase Change Systems-I. Model Formulation, Int. J. Heat Mass Transfer, vol. 30, pp. 2161–2170, 1987.
  • Y. Inatomi, K. Sakata, M. Arivanandhan, G. Rajesh, Y. Hayakawa, A. Tanaka, T. Ozawa, Y. Okano, T. Ishikawa, M. Takayanagi, S. Yoda, and Y. Yoshimura, Current Status of Alloy Semiconductor Crystal Growth Project under Microgravity, Trans. JSASS Aerospace Tech. Japan, vol. 10, pp. Th_1–Th_4, 2012.
  • Y. Inatomi, K. Sakata, M. Arivanandhan, G. Rajesh, V. N. Kumar, T. Koyama, Y. Momose, T. Ozawa, Y. Okano, and Y. Hayakawa, Growth of InxGa1-xSb Alloy Semiconductor at the International Space Station (ISS) and Comparison with Terrestrial Experiments, npj Microgravity, vol. 1, pp. 15011, 2015.
  • K. Okitsu, Y. Hayakawa, A. Hirata, S. Fujiwara, Y. Okano, N. Imaishi, S. Yoda, T. Oida, T. Yamaguchi, and M. Kumagawa, Gravitational Effects on Mixing and Growth Morphology of an In0.5Ga0.5Sb System, Cryst. Res. Technol., vol. 31, pp. 969–978, 1996.
  • K. Okitsu, Y. Hayakawa, T. Yamaguchi, A. Hirata, S. Fujiwara, Y. Okano, N. Imaishi, S. Yoda, T. Oida, and M. Kumagawa, Melt Mixing of the 0.3In/0.7GaSb/0.3Sb Solid Combination by Diffusion under Microgravity, Jpn. J. Appl. Phys., vol. 36, pp. 3613–3619, 1997.
  • Y. Hayakawa, Y. Okano, A. Hirata, N. Imaishi, Y. Kumagiri, X. Zhong, X. Xie, B. Yuan, F. Wu, H. Liu, T. Yamaguchi, and M. Kumagawa, Experimental and Numerical Investigations on Dissolution and Recrystallization Processes of GaSb/InSb/GaSb under Microgravity and Terrestrial Conditions, J. Cryst. Growth, vol. 213, pp. 40–50, 2000.
  • N. Murakami, K. Arafune, T. Koyama, M. Kumagawa, and Y. Hayakawa, Measurement of Growth Rate by Thermal Pulse Technique and Growth of Homogeneous InxGa1-xSb Bulk Crystals, J. Cryst. Growth, vol. 275, pp. 433–439, 2005.
  • Y. Hayakawa, T. Hikida, H. Morii, A. Konno, C.-H. Chen, K. Arafune, H. Kawai, T. Koyama, Y. Momose, T. Ozawa, and T. Aoki, In Situ Observation of Composition Profiles in the Solution by X-ray Penetration Method, J. Cryst. Growth, vol. 310, pp. 1487–1492, 2008.
  • G. Rajesh, M. Arivanandhan, H. Morii, T. Aoki, T. Koyama, Y. Momose, A. Tanaka, T. Ozawa, Y. Inatomi, and Y. Hayakawa, In-Situ Observations of Dissolution Process of GaSb into InSb Melt by X-ray Penetration Method, J. Cryst. Growth, vol. 312, pp. 2677–2682, 2010.
  • G. Rajesh, M. Arivanandhan, N. Suzuki, A. Tanaka, H. Morii, T. Aoki, T. Koyama, Y. Momose, T. Ozawa, Y. Inatomi, Y. Takagi, Y. Okano, and Y. Hayakawa, Effects of Solutal Convection on the Dissolution of GaSb into InSb Melt and Solute Transport Mechanism in InGaSb Solution: Numerical Simulations and In-Situ Observation Experiments, J. Cryst. Growth, vol. 324, pp. 157–162, 2011.
  • K. Sakata, M. Mukai, M. Arivanandhan, G. Rajesh, T. Ishikawa, Y. Inatomi, and Y. Hayakawa, Crystal Growth of Ternary Alloy Semiconductor and Preliminary Study for Microgravity Experiment at the International Space Station, Trans. JSASS Aerospace Tech. Japan, vol. 12, pp. Ph_31–Ph_35, 2014.
  • Y. Takagi, N. Suzuki, Y. Okano, A. Tanaka, Y. Hayakawa, and S. Dost, Numerical Simulation of the Dissolution Process of GaSb into InSb Melt under Normal and Microgravity Conditions, Trans. JSASS Aerospace Tech. Japan, vol. 10, pp. Ph_1–Ph_7, 2012.
  • M. Nobeoka, Y. Takagi, Y. Okano, Y. Hayakawa, and S. Dost, Numerical Simulation of InGaSb Crystal Growth by Temperature Gradient Method under Normal- and Micro-Gravity Fields, J. Cryst. Growth, vol. 385, pp. 66–71, 2014.
  • H. Mirsandi, T. Yamamoto, Y. Takagi, Y. Okano, Y. Inatomi, Y. Hayakawa, and S. Dost, A Numerical Study on the Growth Process of InGaSb Crystals under Microgravity with Interfacial Kinetics, Microgravity Sci. Technol., vol. 27, pp. 313–320, 2015.
  • D. A. Kaminski and C. Prakash, Conjugate Natural Convection in a Square Enclosure: Effect of Conduction in One of the Vertical Walls, Int. J. Heat Mass Transfer, vol. 29, pp. 1979–1988, 1986.
  • M. Bellet, H. Combeau, Y. Fautrelle, D. Gobin, M. Rady, E. Arquis, O. Budenkova, B. Dussoubs, Y. Duterrail, A. Kumar, C. A. Gandin, B. Goyeau, S. Mosbah, and M. Založnik, Call for Contributions to a Numerical Benchmark Problem for 2D Columnar Solidification of Binary Alloys, Int. J. Therm. Sci., vol. 48, pp. 2013–2016, 2009.
  • H. Combeau, M. Bellet, Y. Fautrelle, D. Gobin, E. Arquis, O. Budenkova, B. Dussoubs, Y. D. Terrail, A. Kumar, C. A. Gandin, B. Goyeau, S. Mosbah, T. Quatravaux, M. Rady, and M. Založnik, Analysis of a Numerical Benchmark for Columnar Solidification of Binary Alloys, IOP Conf. Ser. Mater. Sci. Eng., vol. 33, 012086, 2012.
  • C. J. Vreeman and F. P. Incropera, Numerical Discretization of Species Equation Source Terms in Binary Mixture Models of Solidification and Their Impact on Macrosegregation in Semicontinuous, Direct Chill Casting Systems, Numer. Heat Transfer Part B Fundam., vol. 36, pp. 1–14, 1999.
  • C. Prakash and V. R. Voller, On the Numerical Solution of Continuum Mixture Model Equations Describing Binary Solid-Liquid Phase Change, Numer. Heat Transfer Part B Fundam., vol. 15, pp. 171–189, 1989.
  • V. R. Voller, A. Mouchmov, and M. Cross, An Explicit Scheme for Coupling Temperature and Concentration Fields in Solidification Models, Appl. Math. Model., vol. 28, pp. 79–94, 2004.
  • A. Jafari, S. H. Seyedein, and M. R. Aboutalebi, Semi-Implicit Method for Thermodynamically Linked Equations in Phase Change Problems (SIMTLE), Appl. Math. Model., vol. 35, pp. 4774–4789, 2011.
  • R. I. Issa, Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting, J. Comput. Phys., vol. 62, pp. 40–65, 1986.
  • Open source CFD toolbox, OpenFOAM, http://www.openfoam.com/ (cited 8 Feb 2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.